Two MOFs were prepared from zinc(II) sulphate and 1,3,5-benzenetricarboxylic acid (H$_3$BTRI) using the same method although the concentration of starting materials in the solvent system was varied. [Zn$_2$(μ$_2$-OH)$_2$(BTRI)$_3$(DMF)$_2$, (H$_2$O)$_2$] and [Zn$_2$(BTRI)$_3$(DMF)$_2$, 3](H$_2$O) [1] and [Zn$_2$(HBTRI)(BTRI)(H$_2$O)$_2$, DMSO·3H$_2$O] [2] are both anionic networks. The counter ions are located in channels in the structure. Scanning electron microscopy (SEM) reveals that 2 “self-heals” upon dehydration and rehydration. 1 demonstrates the six- and three-connected (4,6)(4,6,8)-sab net while 2 demonstrates the five- and three-connected (6)(6,8)-kdd net.

Topological analysis allows for a simple comparison between different MOFs.

Keywords: MOF, topology, SEM

MS81.P22

Structural characterization of LaTi$_3$Al$_9$O$_{19}$

Martina Kasuníč, Anton Meden, Srečo D. Škapin, Danilo Suvorov, Amalija Golobič,*

Faculty of Chemistry and Chemical Technology, University of Ljubljana. Jozef Stefan Institute, Ljubljana (Slovenia). E-mail: martina.kasunic@fkt.uni-lj.si.

LaTi$_3$Al$_9$O$_{19}$ [1] was prepared as single phase ceramics that was structurally characterized by means of laboratory X-ray powder diffraction. The compound was found to be isosstructural with SrTi$_3$Al$_9$O$_{19}$ [2] and it crystallizes in monoclinic C2/c space group with the following unit cell parameters: $a=22.5935(18)$ Å, $b=10.9991(9)$ Å, $c=9.7296(7)$ Å, $β=98.5634(5)^{\circ}$, $V=2390.97(3)$ Å3, Z=8.

The fundamental building units are AlO$_6$- and TiO$_6$-octahedra which are interconnected by AlO$_4$-tetrahedra and La$^{3+}$ ions into a complex network. Most simply, the structure can be represented as a system of close-packed octahedral layers of three types, i.e. layers A, B and C. In each unit cell, ten of these layers stack along a edge in a sequence ABCBABCBCBA. Typical fragments for layer A are pairs of edge-sharing AlO$_6$-octahedra which are further connected via vertices to La$^{3+}$ ions and AlO$_4$-tetrahedra, respectively. Typical fragments of layers B and C are (TiAl,TiO$_6$) hook-like groups of edge-sharing octahedra; the main difference between B and C layers is that B layers additionally include La$^{3+}$-ions while C layers consist of AlO$_4$-tetrahedra. Layers of octahedra are linked via edge- and vertex-sharing between A-B and C-C layers whereas the connections between B and C layers run only through the sharing of vertices. Neither within the layers nor between them there are any face-sharing octahedra and AlO$_4$-tetrahedra connect with the other fragments only through vertices. With the described packing of the layers and their connections, the 12-fold coordination of lanthanum ions is achieved. The plausibility of the obtained structure was confirmed by bond valence sums and global instability index calculations.

The initial pattern matching shows resemblance between LaTi$_3$Al$_9$O$_{19}$ and one of the largest structures determined *ab initio* from powder data, La$_x$Ti$_{15}$Al$_{57}$O$_{98}$ [3]. In our opinion, the latter is not completely physically and chemically reasonable as it contains compositional as well as structural inconsistencies (e.g. some metal-metal distances are too short) that result in significant discrepancies of bond valence sums from the nominal atomic volumes and high value of global instability index of 0.65 valence units.

Keywords: rietveld refinement, XRPD, LaTi$_2$Al$_9$O$_{19}$

MS81.P23

Composition-dependent negative thermal expansion in tetracyanidoborate materials

Jessica J. Chadbourne,* David J. Price, Vanessa K. Peterson,* Cameron J. Kepert,* School of Chemistry, University of Sydney, NSW, 2006, (Australia). *The Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB1 Menai, NSW, (Australia). E-mail: jessica.chadbourne@sydney.edu.au

Coordination framework materials are extended crystalline networks composed of repeating units of metal ions and bridging ligands. As virtually limitless combinations of metal ions, ligands and structures are possible, these materials can display a wide variety of different properties, including porosity, catalysis, gas storage, magnetic behaviour, and negative thermal expansion [1]. This research expands the current literature on the properties of cyanide (C≡N) bridged framework materials by presenting the first negative thermal expansion results for a series of isosstructural materials containing the tetracyanidoborate anion, [B(CN)$_4$]$_n$, with a range of s- and d-block metal ions (Li$^+$, Na$^+$, Cu$^{2+}$ and Ag$^+$).

Negative thermal expansion (NTE) describes the tendency of a material to shrink reversibly upon heating and has been demonstrated in a number of cyanide-bridged framework materials to date, including the compounds Zn(CN)$_2$ and Cd(CN)$_2$ [2] which are each isosstructural with the materials in this study. Cooperative transverse vibrations (phonon modes) are responsible for the overall contraction of materials in this class [3] and this work contributes to a greater understanding of the influence of framework flexibility on observed NTE by studying the effects of systematically changing the metal ion in otherwise identical structures. Results to date from synchrotron powder X-ray diffraction, neutron powder diffraction and single crystal X-ray diffraction indicate that two of these compounds, [Na[B(CN)$_4$]] and Ag[B(CN)$_4$], undergo amongst the largest isotropic NTE currently known (a = -31 × 10$^{-6}$ K$^{-1}$ and -25 × 10$^{-6}$ K$^{-1}$ at 100 K, respectively; a = $∂l/∂T$, where l is the cubic unit cell dimension) [4]. The magnitude of transverse vibrations and thus NTE in these compounds appears strongly correlated with the strength and flexibility of the metal-ligand interactions and the degree of proximity of the two interpenetrated nets that comprise the structures.
Surface modification of hydroxyapatite by grafting alkyl phosphonic dichloride
Hassen Agougui,1 Abdallah Aissa,2 Mongi Debbarhi,3 a Laboratoire de Physico-Chimie des Matériaux, Faculté des Sciences de Monastir, 5019 Monastir, (Tunisia). E-mail: Hassenagougui@yahoo.fr

The inorganic-organic hybrids have interesting applications resulting from the combination of some characteristic properties of the inorganic substrate (mechanical and chemical properties, exchange capacity, bioreactivity, optical properties...) with those of the organic grafting (polymerizability, superficial tension...). Such modified materials are used in catalysis, chromatography, biomedical domain...

A suspension of calcium hydroxyapatite Ca10[(PO4)6](OH)2 treated by the different alkylphosphonates (R-POCl2, R2- methyl or octyl) in organic solvent using a molar ratio x=2 or 4, x=n(organic)/ n(apatite). The surface of the modified CaHAp was characterized using X-ray diffraction, IR and 31P MAS-NMR spectroscopies, chemical analysis and Atomic Force Microscopy (AFM). No remarkable change in XRD patterns was observed after grafting. FTIR results indicated that new vibration modes related to phosphonate groups appear essentially in the modified CaHAp. The surface texture was changed and roughness decreased. The number of phosphate groups grafted, in the modified materials, was calculated from chemical analysis results.

Keywords: apatite, functional, AFM

Crystal structures and ultramicroporosity in Mg & Ca tetraphosphonate hybrids
Rosario M. Pérez Colodrero,1 Aurelio Cabeza Díaz,2 Jordi Rius,3 Pascual Olivera-Pastor,4 Konstantinos Demadis,5 Didier Villlemur,6 Miguel Angel Garcia Aranda,7 a Departamento de Química Inorgánica, Universidad de Málaga, Malaga (Spain). Instituto de Ciencias de Materiales de Barcelona, Bellaterra, Catalunya (Spain). b Crystal Engineering, Growth & Design Laboratory, Department of Chemistry, University of Crete, Heraklion, Crete (Greece). c UMR CNRS 6507, INSTM, Université de Caen, Caen (France). E-mail: colodrero@uma.es

The chemistry of hybrid organic-inorganic materials has experimented, during the past decade, an exponential growth due to the high number of possible applications in many fields such as gas storage, catalysis, and ion exchange [1]. The phosphonate-based metal organic framework is today under investigation, and it is a common opinion that the best results are forthcoming. This is mainly due to the fact that generally the phosphonic acids have a higher flexibility degree, with respect to the carboxylic ligands, leading to a major structural variability and therefore to a lower control in their design.

Keywords: solid_solution, elastic_property