Poster Sessions

S. Lafuerza, J. García, G. Subías, M.C. Sánchez, V. Cuartero, J. Stankiewicz, Dalton trans. 2011, 40, 3211-3218

Keywords: X-ray_diffraction, EXAFS, miscibility

MS81.P45

Acta Cryst. (2011) A67, C719

Reversible phase transition of metal-organic framework by de/ rehydration
Hwo-Shuenn Sheu, ${ }^{\text {a }}$ Wei-Ju Shih, ${ }^{\text {a }}$ Gene-Hsiang Lee, ${ }^{\text {b }}$ Ching-Chun Yang, ${ }^{\text {c }}$ and Chih-Chieh Wang, ${ }^{\text {c }}{ }^{a}$ National Synchrotron Radiation Research Center, Hsinchu, (Taiwan). ${ }^{b}$ Department of Chemistry, National Taiwan University, Taipei, (Taiwan). ${ }^{c}$ Department of Chemistry, Soochow University,Taipei, (Taiwan). E-mail: hsheu@ nsrrc.org.tw

The phase transition of a new coordination polymer, $[\mathrm{Zn}(\mathrm{HBT}$ C) $\left(\mathrm{BPE}_{0.5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}} \cdot \mathrm{nH}_{2} \mathrm{O}, \mathrm{HBTC}^{2}=$ dianion of trimesic acid, DPE $=1,2$-bis-(4-pyridyl)ethane, during dehydration and rehydration processes has been monitored by in-situ synchrotron powder X-ray diffractometry. The complex with an extended 1D ladderlike metalorganic framework (MOF) has been synthesized and structural characterized by single-crystal X-ray diffraction method. Structural determination reveals that the $\mathrm{Zn}(\mathrm{II})$ ion is four-coordinated in a distorted tetrahedral geometry, bonded to one nitrogen atom from one BPE ligand, and three oxygen atoms from two monodentate carboxylate groups of two HBTC ${ }^{2-}$ ligands and one coordinated water molecule. The 1D ladderlike MOF 1 dehydrates up heating of the solid to $180^{\circ} \mathrm{C}$ to form a new 2D MOF, $[\mathrm{Zn}(\mathrm{HBTC})(\mathrm{DPE}) 0.5] \mathrm{n}$ (2). The reversible solid-state structural transformation between crystalline 1 with 1D ladderlike framework and its dehydrated powder 2 with 2D framework via the displacement of coordinated water molecule to HBTC^{2-} ligand, by thermal de/rehydrated processes has been monitoring by in situ PXRD measurements. In the crystal lattice, during heating process, one oxygen atom of the uncoordinated carboxylate group of HBTC^{2-} ligand moves toward the neighboring $\mathrm{Zn}(\mathrm{II})$ ion, with concomitant removal of the water molecule, and form a new $\mathrm{Zn}-\mathrm{O}$ bond without expanding the coordination geometry of metal center. The dehydrated structure for 2 at $180^{\circ} \mathrm{C}$ was determined from the powder diffraction data with program DASH. Powder pattern was indexed with Dicvol and Treor programs. The structure factors of the powder patterns were extracted with Pawley's method, and simulated annealing method was employed to determine the crystal structure. The final refinement with the Rietveld method was performed using GSAS-EXPGUI program.

Keywords: powder crystallography, metal-organic framework, dehydration

MS81.P46
Acta Cryst. (2011) A67, C719

Origin of giant tetragonal lattice strain in $(1-x) \mathrm{BiFeO}_{3}-x \mathrm{PbTiO}_{3}$ System
Kazuaki Taji, ${ }^{a}$ Chikako Moriyoshi, ${ }^{a}$ Yoshihiro Kuroiwa, ${ }^{a}$ Hiroki Moriwake, ${ }^{\text {b }}$ Shuvrajvoti Bhattacharjee, ${ }^{\text {c }}$ Dhananjai Pandey, ${ }^{\text {c }}$ ${ }^{a}$ Department of Physical Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima (Japan). ${ }^{\mathrm{b}}$ Nanostructures Research Laboratory, (Japan) Fine Ceramic Center, Nagoya (Japan). ${ }^{\mathrm{c}}$ School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi (India). E-mail: tajikazuaki@ hiroshima-u.ac.jp

Electron charge density studies are carried out to reveal the origin of the large tetragonal lattice distortion in multiferroic perovskites $(1-x) \mathrm{BiFeO}_{3}-x \mathrm{PbTiO}_{3}(\mathrm{BF}-x \mathrm{PT})$ by analyzing synchrotron radiation powder diffraction data measured at SPring-8 BL02B2 using the MEM/ Rietveld method. The characteristic chemical bondings that are $\mathrm{Fe} / \mathrm{Ti}$ in 5 -fold O coordination and covalent $\mathrm{Bi} / \mathrm{Pb}-\mathrm{O}$ bonding are clearly visualized in the MEM charge density maps in the entire tetragonal composition range $x>0.31$, which implies $\mathrm{BF}-x \mathrm{PT}$ is a layered material in the tetragonal phase. The largest tetragonal lattice strain of $c / a=1.187$ is observed at $x=0.31$ in the vicinity of the morphotropic phase boundary (MPB) to the rhombohedral structure [1]. Note that all perovskite-type solid solutions with tetragonal structures never show the largest tetragonal distortion near the MPB, for example the smallest tetragonal distortion in PZT near the MPB [2, 3]. The crystal structure of BF-0.31PT, together with PT, is shown in Fig. 1. With decreasing x from $1(\mathrm{PT})$ to 0.31 , the lattice parameter a decreases, while c increases. Significant changes in the lattice parameters a and c are attributed to changes in the $\mathrm{Bi} / \mathrm{Pb}-\mathrm{O}$ (covalent) and $\mathrm{Fe} / \mathrm{Ti}-\mathrm{O}$ (ionic) bond lengths, respectively. The extrapolated lattice parameters and bond lengths at x $=0(\mathrm{BF})$ on the basis of the experimentally observed ones well coincide with those optimized by $a b$ initio calculations assuming the tetragonal structure with $P 4 m m$ symmetry. We consider that the tetragonal structure of BF-0.31PT with large tetragonal distortion is originated from the hidden tetragonal structure of BF . By substituting BF for PT in the $\mathrm{BF}-x \mathrm{PT}$ system, the rotational mode of the $\mathrm{Fe} / \mathrm{Ti}-\mathrm{O}_{6}$ octahedron is suppressed, and the tetragonal structure is established by the dominated soft phonon at the Γ point in the Brillouin zone. The $\mathrm{Bi} / \mathrm{Pb}-\mathrm{O}$ covalent bonding plays an important role for the large tetragonal distortion. It is quite natural to consider that the layered structure involving the $\mathrm{Fe} / \mathrm{Ti}-\mathrm{O}_{5}$ pyramids are materialized by the contraction on the $\mathrm{Bi} / \mathrm{Pb}-\mathrm{O}$ bonding.

Fig. 1 Crystal structure of BF-0.31PT and PT.
[1] S. Bhattacharjee, D. Pandey, Journal of Applied Physics 2010, 107, 124112124122. [2] E. Sawaguchi, Journal of The Physical Society of Japan 1953, 8, 615-629. [3] M.R. Suchomel, P.K. Davies, Journal of Applied Physics 2004, 96, 4405-4410.

Keywords: X-ray_diffraction, ferroelectric, perovskite

MS81.P47

Acta Cryst. (2011) A67, C719-C720
Crystal structure of baTiO_{3}-based ceramics in MLCCs under applied high voltage
Yoshihiro Kuroiwa, ${ }^{a}$ Hisanori Ohkubo, ${ }^{\text {a }}$ Chikako Moriyoshi, ${ }^{a}$ Noriyuki Inoue, ${ }^{\text {b }}$ and Takafumi Okamoto, ${ }^{\text {b }}{ }^{a}$ Department of Physical Science, Graduate School of Science, Hiroshima University, HigashiHiroshima (Japan). ${ }^{b}$ Murata Manufacturing Co., Ltd., Nagaokakyo (Japan). E-mail: kuroiwa@sci.hiroshima-u.ac.jp

