Electron charge density studies are carried out to reveal the origin of the large tetragonal lattice distortion in multiferroic pervoskites (1-x)BiFeO3-xPbTiO3 (BF-PT) by analyzing synchrotron radiation powder diffraction data measured at SPring-8 BL02B2 using the MEM/ Rietveld method. The characteristic chemical bondings that are Fe/Ti in 5-fold O coordination and covalent Bi/Pb-O bonding are clearly visualized in the MEM charge density maps in the entire tetragonal composition range x > 0.31, which implies BF-xPT is a layered material in the tetragonal phase. The largest tetragonal lattice strain of c/a = 1.187 is observed at x = 0.31 in the vicinity of the morphotropic phase boundary (MPB) for the rhombohedral structure [1]. Note that all pervoskite-type solid solutions with tetragonal structures never show the largest tetragonal distortion near the MPB, for example the smallest tetragonal distortion in PZT near the MPB [2, 3]. The crystal structure of BF-0.31PT, together with PT, is shown in Fig. 1. With decreasing x from 1 (PT) to 0.31, the lattice parameter a decreases, while c increases. Significant changes in the lattice parameters a and c are attributed to changes in the Bi/Pb-O (covalent) and Fe/Ti-O (ionic) bond lengths, respectively. The extrapolated lattice parameters and bond lengths at x = 0 (BF) on the basis of the experimentally observed ones well coincide with those optimized by ab initio calculations assuming the tetragonal structure with Pnmm symmetry. We consider that the tetragonal structure of BF-0.31PT with large tetragonal distortion is originated from the hidden tetragonal structure of BF. By substituting BF for PT in the BF-xPT system, the rotational mode of the Fe/Ti-O octahedron is suppressed, and the tetragonal structure is established by the dominated soft phonon at the Γ point in the Brillouin zone. The Bi/Pb-O covalent bonding plays an important role for the large tetragonal distortion. It is quite natural to consider that the layered structure involving the Fe/Ti-O pyramids are materialized by the contraction on the Bi/Pb-O bonding.

Fig. 1 Crystal structure of BF-0.31PT and PT.


Keywords: X-ray diffraction, ferroelectric, pervoskite

Poster Sessions

S. Lañueza, J. Garcia, G. Subias, M.C. Sánchez, V. Cuartero, J. Stankiewicz, Dalton trans. 2011, 40, 3211-3218

Keywords: X-ray_diffracion, EXAFS, miscibility

MS81.P45

Reversible phase transition of metal-organic framework by de/rehydration

Hwo-Shuenn Sheu,2 Wei-Ju Shih,3 Gene-Hsiang Lee,3 Ching-Chun Yang,3 and Chih-Chieh Wang,3 “National Synchrotron Radiation Research Center, Hsinchu, (Taiwan). 3Department of Chemistry, National Taiwan University, Taipei, (Taiwan). 3Department of Chemistry, Soochow University, Taipei, (Taiwan). E-mail: hsheu@nsrrc.org.tw

The phase transition of a new coordination polymer, [Zn(HBTC)(BPE)0.5]n, nH2O, HTBTC=C=dianion of trimesic acid, DPE = 1,2-bis(4-pyridyl)ethane, during dehydorization and rehydration processes has been monitored by in-situ synchrotron powder X-ray diffractrometry. The complex with an extended 1D ladderlike metal-organic framework (MOF) has been synthesized and structural characterization by single-crystal X-ray diffraction method. Structural determination reveals that the Zn(II) ion is four-coordinated in a distorted tetrahedral geometry, bonded to one nitrogen atom from one BPE ligand, and three oxygen atoms from two monodentate carboxylate groups of two HBTC ligands and one coordinated water molecule. The 1D ladderlike MOF I dehydroizes up heating of the solid to 180°C to form a new 2D MOF, [Zn(HBTC)(DPE)0.5]n (2). The reversible solid-state structural transformation between crystalline 1 with 1D ladderlike framework and its dehydrated powder 2 with 2D framework via the displacement of coordinated water molecule to HTBTC ligand, by thermal dehydration processes has been monitoring by in situ PXRD measurements. In the crystal lattice, during heating process, one oxygen atom of the uncoordinated carboxylate group of HBTC ligand moves toward the neighboring Zn(II) ion, with concomitant removal of the water molecule, and form a new Zn-O bond without expanding the coordination geometry of metal center. The dehydrated structure for 2 at 180°C was determined from the powder diffraction data with program DASH. Powder pattern was indexed with Dicvol and Treor programs. The structure factors of the powder patterns were extracted with Pawley’s method, and simulated annealing method was employed to determine the crystal structure. The final refinement with the Rietveld method was performed using GSAS-EXPGUI program.

Keywords: powder crystallography, metal-organic framework, dehydroization

MS81.P46

Origin of giant tetragonal lattice strain in (1-x)BiFeO3-xPbTiO3 System

Kazuki Taij,1 Chikako Moriyoshi,2 Yoshihiro Kuroiwa,2 Hiroki Morikawa,2 Shuvrajoti Bhattacharjee,1 Dhananjai Pandey,2 1Department of Physical Science, Graduate School of Science, Hiroshima University, (Japan). 2Faculty of Education and Science, Hiroshima University, (Japan). 1E-mail: tajikazuaki@hiroshima-u.ac.jp

Electron charge density studies are carried out to reveal the origin of the large tetragonal lattice distortion in multiferroic pervoskites (1-x)BiFeO3-xPbTiO3 (BF-PT) by analyzing synchrotron radiation powder diffraction data measured at SPring-8 BL02B2 using the MEM/ Rietveld method. The characteristic chemical bondings that are Fe/Ti in 5-fold O coordination and covalent Bi/Pb-O bonding are clearly visualized in the MEM charge density maps in the entire tetragonal composition range x > 0.31, which implies BF-xPT is a layered material in the tetragonal phase. The largest tetragonal lattice strain of c/a = 1.187 is observed at x = 0.31 in the vicinity of the morphotropic phase boundary (MPB) for the rhombohedral structure [1]. Note that all pervoskite-type solid solutions with tetragonal structures never show the largest tetragonal distortion near the MPB, for example the smallest tetragonal distortion in PZT near the MPB [2, 3]. The crystal structure of BF-0.31PT, together with PT, is shown in Fig. 1. With decreasing x from 1 (PT) to 0.31, the lattice parameter a decreases, while c increases. Significant changes in the lattice parameters a and c are attributed to changes in the Bi/Pb-O (covalent) and Fe/Ti-O (ionic) bond lengths, respectively. The extrapolated lattice parameters and bond lengths at x = 0 (BF) on the basis of the experimentally observed ones well coincide with those optimized by ab initio calculations assuming the tetragonal structure with Pnmm symmetry. We consider that the tetragonal structure of BF-0.31PT with large tetragonal distortion is originated from the hidden tetragonal structure of BF. By substituting BF for PT in the BF-xPT system, the rotational mode of the Fe/Ti-O octahedron is suppressed, and the tetragonal structure is established by the dominated soft phonon at the Γ point in the Brillouin zone. The Bi/Pb-O covalent bonding plays an important role for the large tetragonal distortion. It is quite natural to consider that the layered structure involving the Fe/Ti-O pyramids are materialized by the contraction on the Bi/Pb-O bonding.

Fig. 1 Crystal structure of BF-0.31PT and PT.


Keywords: X-ray_diffraction, ferroelectric, pervoskite

MS81.P47

Crystal structure of BaTiO3-based ceramics in MLCCs under applied high voltage

Yoshihiro Kuroiwa1, Hisanori Ohkubo,2 Chikako Moriyoshi,1 Noriyuki Inoue,3 and Takafumi Okamoto,2 1Department of Physical Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan. 2Department of Physical Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan. 3Murata Manufacturing Co., Ltd., Nagaokakyo (Japan). E-mail: kuroiwa@sci.hiroshima-u.ac.jp
Barium titanate BaTiO₃ is the inorganic compound with a cubic perovskite structure as a prototype structure. Successive phase transitions take place with decreasing temperature, and BaTiO₃, with a tetragonal structure, shows prominent ferroelectric properties at room temperature. Thus far, BaTiO₃ has been generally used as a dielectric for multilayer ceramic capacitors (MLCCs) owing to its low dielectric loss and high permittivity. In particular, to satisfy the low dielectric loss and low microphonic requirements, Gd- and Mg-doped BaTiO₃ are proposed as candidates for the dielectric materials [1-3], which enable us to suppress various problems involved in applying the ferroelectric properties of pure BaTiO₃ to MLCCs. The temperature dependence of permittivity can be improved by increasing the Gd and Mg contents, although the Curie temperature (Tc) is significantly decreased. Our electron charge density study reveals that the lowering of Tc is due to the decrease in covalency on the Ti-O bond in BaTiO₃ [4]. We have recently revealed that Gd is the most effective rare-earth element for suppressing insulation degradation for applied high voltage and temperature stress among BaTiO₃-based MLCCs. In this paper, we report in situ crystal structure analysis of (Ba₀₉₋ₓGdₓ)(Tiₓ₋₉₋ₐMg₉₋ₓ)O₃ (BGTM) under variations in applied high electric field and temperature using a sample fabricated based on a MLCC. The electric-field-induced lattice strain and atomic displacement in BGTM are demonstrated in the environments which simulate the electric device operating.

Powder diffraction experiment was carried out using the large Debye-Scherrer camera installed at BL02B2 in SPring-8. The energy of X-rays was 35 keV (λ = 0.35 Å), which enabled us to investigate the inside of MLCC in transmission geometry. A clear one-to-one correspondence between the crystal structure and the dielectric properties of BGTM in the MLCC, e.g., the phase transition temperature Tc = 293 K, was confirmed on the diffractometer using the simultaneous measuring system. The tetragonal distortions in the variation of the lattice constants and the atomic displacement of the B-site atoms were investigated as functions of temperature (200 – 400 K) and applied electric field up to 300 kV/cm. The tetragonal distortion observed for the ceramic grains arranged in the electric field was significant in the vicinity of Tc. The lattice strain was increased with increasing the electric field, and saturated above 100 kV/cm at 300 K. The displacements of the B-site ions showed a similar variation as the lattice strain. The fluctuation of the dipole moment at the phase transition can be demonstrated by adopting a Langevin function for the electric-field-induced polarization calculated based on the point charge model. These results give clear evidence that the induced lattice strains are attributed to the displacements of the constituent ions in the electric field.

Layered double hydroxide (LDH), of which general formula is [Mₓ⁺,Mₓ⁺,(OH)ₓ]₀.ₖ₋ₐ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₚ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ₙ₋ₐ₋ultan