containing polyoxotungstates precludes the closing of the Keggin unit and allows for the formation of many sandwich type structures. Among the well-known class of TM substituted sandwich POMs, Krebs-type polyanions $[M_4(H_2O)_{10}(B-\beta-SbW_9O_{33})_2]^n$ [1] are good candidates for preparing hybrid compounds. Only a few hybrid structures derived from TM bi-substituted Krebs type POMs with a general formula $[(TM-L_n)_2(WO_2)_2(\beta-SbW_9O_{33})_2]$ [2] (L=organic ligand) have been reported to our knowledge.

Here we report the synthesis, chemical and spectroscopic characterization and X-ray crystal structure of $Na_4[{Ni(L) (H_2O)}_2(WO_2)_2(\beta-SbW_9O_{33})_2]24H_2O$ (L=4-Imidazole carboxylic acid, $C_4H_4N_2O_2$).

The structure of the polyoxoanion $[{Ni(L)(H_2O)}_2(WO_2)_2(\beta-SbW_9O_{33})_2]^4$ (Figure 1) comprises two $[B-\beta-SbW_9O_{33}]^2$ components joined together *via* two $\{WO_2\}$ units and two octahedral coordinated Ni(II) ions forming a Krebs-type sandwich. Each Ni(II) ion is bonded to one O atom of one $[B-\beta-SbW_9O_{33}]^{9}$ moiety and two O atoms of the other one. The coordination sphere is completed by the N, O-donor 4-imidazole carboxylic acid ligand and a water molecule. The crystal packing is built up by discrete molecular hybrid-POMs linked through the coordination sphere of Na cations showing corrugated layers parallel to the (101) plane. This arrangement creates channels along the [001] direction where almost all water molecules are located.

Figure 1. Hybrid POM [$\{Ni(C_4H_4N_2O_2)(H_2O)\}_2(WO_2)_2(\beta-SbW_9O_{33})_2]^4$.

 M. Bosing, I. Loose, H. Pohlmann, B. Krebs, *Chemistry, European Journal*, **1997**,8, 1232-1237. [2] See for example, A. Dolbecq, J.-D. Compain, P. Mialane, J. Marrot, E. Rivière, F. Sécheresse, *Inorganic Chemistry* **2008**, *47*, 3371-3378.

Keywords: polyoxotungstate, hybrid, antimony.

MS81.P59

Acta Cryst. (2011) A67, C725

Inorganic-metalorganic hybrid compounds based on POMs and Cu-N₂Py₂ complexes

<u>Amaia Iturrospe</u>, Pablo Vitoria, Santiago Reinoso, Luis Lezama, Beñat Artetxe, Aroa Pache, Juan M. Gutiérrez-Zorrilla. *Departament of Inorganic Chemistry, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Bilbao (Spain)*. E-mail: amaia.iturrospe@ehu.es

It has been widely recognized that the polyoxometalates (POMs) exhibit a variety of structures and properties that make them useful in catalysis, material science and medicine [1]. Recently a new advance in the POM chemistry is that a large -number of hybrid compounds with unprecedented structures constructed from the combination of POMs and transition metal coordination complexes (TMCs) have been

obtained [2]. An intelligent choice of POMs and TMCs may yield materials with fascinating structures and desirable properties.

Currently, we are interested in exploring the applicability of Keggin-POMs and $TM-N_2Py_2$ complexes in the preparation of new hybrid compounds.

Here we report the synthesis, chemical and spectroscopic characterization, X-ray crystal structure, and magnetic properties of [C u(bpmen)(H₂O)][SiW₁₂O₄₀{Cu(bpmen)}] (1) (bpmen: N,N'-Dimethyl-N,N'-bis(2-pyridylmethyl)ethylenediamine) and [Cu(bpmpn)(H₂O)]_2[SiW₁₂O₄₀]·H₂O (2) (bpmpn: N,N'-Dimethyl-N,N'-bis(2-pyridylm ethyl)ethylenediamine). The compounds (1) and (2) are prepared by hydrothermal synthesis.

Compound (1) can be viewed as a sequence along the [001] direction of hybrid inorganic-metalorganic corrugated layers built of $[SiW_{12}O_{40}{Cu(bpmen)}]$ chains, linked through the apical water molecule of the unsupported [Cu(bpmen)] and the axial oxygen atoms of supported [Cu(bpmen)(H₂O)] complex.

Compound (2) present a 2D arrangement formed by layers parallel to (110) plane built of POMs linked both via copper complexes coordination sphere and water molecules.

 D.-L. Long, R. Tsunashima, L. Cronin, Angew. Chem. Int. Ed. 2010, 49, 2-25.
S. Reinoso, P. Vitoria, J.M. Gutiérrez-Zorrilla, L. Lezama, L. San Felices, J.I. Beitia, Inorg. Chem. 2005, 44, 9731.

Keywords: polyoxometalate, hybrid, tetradentate N2Py2 ligands

MS81.P60

Acta Cryst. (2011) A67, C725-C726

Solid state arrangement of diruthenium tetracaboxylates and tetraamidates

Josefina Perles,^a Patricia Delgado-Martínez,^a Reyes Jiménez-Aparicio,^a José L. Priego,^a M. Rosario Torres,^b Francisco A. Urbanos,^a ^aDepartamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid (Spain). ^bCentro de Asistencia a la Investigación de Rayos X, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid (Spain). E-mail: jperles@ quim.ucm.es

Diruthenium complexes of the type $[Ru_2Cl(\mu-O_2CR)_4]$ (R = alkyl, aryl) have been intensively studied due to their interesting electronic and magnetic properties [1]. In these complexes, the ruthenium atoms are strongly bonded by four bridging carboxylate ligands, with one axial position occupied by a chloride ion. The chloride ligand of the $[Ru_2Cl(\mu-O_2CR)_4]$ molecule is usually also bonded to the free axial