Phospholipid cavity insight of Pa_LOX.

Keywords: lipoygenases, membrane interaction

MS85.P03

Crystal structures of lipid-raft protein stomatin and its specific protease

Hidehisa Yokoyama, Satoshi Fujii, Ikuo Matsui, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka (Japan). Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba (Japan). E-mail: yokoyama@u-shizuoka-ken.ac.jp

Stomatin is a major integral membrane protein of human erythrocytes, the absence of which is associated with a form of hemolytic anemia known as hereditary stomatocytosis. It is reported that stomatin regulates the gating of acid-sensing ion channels in mammalian neurons. However, the function of stomatin is not fully understood. In the genomic sequence of the hyperthermophilic archaeon *Pyrococcus horikoshii*, the putative operon-forming genes PH1510 and PH1511 encode stomatin and STOPP (stomatin operon partner protein), respectively. The N-terminal region of PH1510p (1510-N) is a serine protease with a catalytic Ser-Lys dyad (Ser97, Lys138), and specifically cleaves the C-terminal hydrophobic domain of PhSto (1510-N) is a serine protease with a catalytic Ser-Lys dyad (Ser97, Lys138), and specifically cleaves the C-terminal hydrophobic domain of PhSto (1510-N) is a serine protease with a catalytic Ser-Lys dyad (Ser97, Lys138). It is partly similar in structure to the band-7 domain of stomatin. It was determined the crystal structure of the core domain of stomatin PH1511p (residues 56-234, designated as PhSto) at 3.2 Å resolution [2]. And we determined the crystal structure of 1510-N K138A mutant at 2.3 Å resolution [3].

MS85.P04

Acta Cryst. (2011) A67, C738–C739

Gram-positive bacterial conjugation: new structural insight on plasmid pIP501

N. Gössweiner-Mohr, C. Fischer, E.-K. Çelik, K. Arends, E. Grohmann, W. Keller, Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldstrasse 50/III, 8010 Graz (Austria). Institute for Environmental Microbiology/Genetics, Technical University Berlin, Franklinstr. 29, 10587 Berlin, (Germany). Email: nikolaus.goessweiner-mohr@uni-graz.at

Conjugative plasmid transfer is an important mean for horizontal gene spread (e.g. of antibiotic resistance) [1]. The model host of our Gram-positive multiple antibiotic resistance plasmid pIP501 is *Enterococcus faecalis*, which presents an important nosocomial pathogen. The plasmid conjugation process in Gram-negative bacteria has been studied in detail, whereas little information is available about the corresponding mechanisms in Gram-positive bacteria [2]. pIP501 has the broadest known host range for plasmid transfer in Gram-positive bacteria and is the first system for which also stable replication in Gram-negative bacteria was shown.

The transfer region of pIP501 is organized in an operon encoding fifteen putative transfer proteins. Three of these Tra proteins show significant sequence similarity to *Agrobacterium tumefaciens* T-DNA transfer system proteins: an ATPase (ORF5 homologue to VirB4) [3], a coupling protein (ORF10 homologue to VirD4) and a lytic transglycosylase (ORF7 homologue to VirB1) [4].

One priority of the project is to determine the structure of ORF11 and ORF14, two members of the T-DNA transfer system. 7xHis-fusion proteins of both candidates have already been successfully expressed, purified, biochemically characterized and used in crystallisation- and optimization screens.

Recently, the structure of ORF14 was solved, using selenomethionine anomalous data for phasing. The 1.4 Å structure revealed an internal dimer fold, consisting of anti-parallel beta sheets in the middle and a “helix-turn-helix” like motif on both ends. Together with previous EMSA results, these findings support the assumption that ORF14 is a DNA binding protein. To acquire detailed insight into this interaction, ORF14 has been set up with dsDNA oligos in co-crystallisation experiments.