(Macromolecular crystallization: robotics, procedures and Innovations)

MS92.P01

Macromolecular crystallization: robotics, procedures and Innovations

Fabrice Gorrec, Olga Perisic, Chris Aylett and Jan Löwe, MRC Laboratory of Molecular Biology (LMB), Cambridge, (UK). Email: fgorrec@mrc-lmb.cam.ac.uk

At the time of crystallization experiments the structure of a macromolecule is not known and hence an optimum strategy cannot be established. At the LMB, scientists can undertake initial experiments using a wide variety of conditions and robust automated procedures [1]. The procedures are straightforward, enabling LMB laboratory to operate independently. We are continuously developing methods, like the Pi sampling [2] and devices to increase the change of crystallization and crystal optimization. There are now different MRC crystallization plates that can be used on commercially available robots [3]. Also, we have created screens like MORPHEUS [4] to complete the formulation of commercial kits.

Keywords: macromolecular crystallization, screen, automation

MS92.P02

Utilization of desiccant for enhancing protein crystallization

Da-Chuan Yin, Qin-Qin Lu, Rui-Qing Chen, Si-Xiao Xie, Yong-Ming Liu, Xian-Fang Zhang, Li Zhu, Zheng-Tang Liu, Peng Shang, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, Shaanxi (PR China). E-mail: yindc@nwpu.edu.cn

The vapor diffusion (hanging or sitting drop) technique is widely used in protein crystallization screens. In conventional vapor diffusion crystallization screens the concentration of protein usually increases from 0.5C (the initial protein concentration before mixing with the reservoir solution) to C. This limited concentration range reduces the probability of the solution being in the nucleation zone. If the protein concentration range is increased, we may expect to see a higher crystallization success rate.

Based on the above consideration, we proposed a new method to increase the concentration range in protein crystallization by using desiccant instead of the reservoir solution in the vapor diffusion technique [1]. Fig. 1 illustrates the difference in the arrangement of crystallization cells between the conventional and modified vapor diffusion methods.

Thirteen proteins were tested using the modified and conventional sitting drop methods. It was found that the improvement by using the modified method is strikingly significant. With consideration of the following features we recommend this modified method for practical protein crystallization screens. (1) Conditions under which drops remain clear in the conventional vapor diffusion method may yield crystals in the modified method. (2) The modified method can produce crystals from solutions with lower initial protein concentrations, which consumes less protein. It is always very difficult to produce protein samples at concentrations sufficient for crystallization trials. Using the modified method, we did not need to worry as much about the concentration of the protein during sample preparation. (3) The involved modification is very simple and efficient and can be applied without the need for large changes to the standard vapor diffusion protocol. The modification can also be integrated into automated systems. (4) Finally, the modified method reduces the cost of screening because no reservoir solution is necessary.

Keywords: protein, crystallization, methodology

MS92.P03

Fields and crystals: what can we learn about quality?

Vivian Stojanoff, a Jean Jakonic,* Christopher Owen,* and Abel

Figure 1. Schematic illustration of the difference in the arrangement of crystallization cells between the conventional and modified vapor diffusion methods. (a) The arrangement of crystallization cells in the conventional vapor diffusion method (sitting drop method). (b) The arrangement of crystallization cells in the modified vapor diffusion method [1].

Keywords: protein, crystallization, methodology

C765
MS92.P04

Random microseeding: a theoretical and practical exploration of the Microseed Matrix-Screening (MMS) method, with new recommendations for achieving crystallization success.

Patrick D. Shaw Stewart, Richard A. Briggs, Stefan A. Kolek, Peter Baldock, Douglas Instruments Ltd, (UK), Email: Patrick@douglas.co.uk.

Douglas Instruments has completed theoretical and practical studies of Microseed Matrix-Screening (MMS), a powerful approach to protein crystallization, introduced by Ireton and Stoddard in 2004 [1]. The method was automated by D’Arcy et al. [2], who first used seeding with random screening kits. Experience shows that MMS with random screens generates more hits or better-diffracting crystals in about 75% of cases where at least one crystal can be obtained.

Our studies included analysis of the stability of seed crystals suspended in unconventional stock solutions and the effectiveness of seed crystals from novel sources. This has given rise to new recommendations for maximizing the number of hits, reducing the prevalence of salt crystals, increasing the diversity of crystal forms, and harvesting seed crystals from microfluidic devices. We also investigated nucleation with microporous glass, zeolites, precipitates and mixtures of crushed crystals of proteins that were unrelated to the target protein. These were less effective than conventional MMS, but may still be useful - they can of course be used before the first hits have been found. Throughout the project, the statistical significance of experiments was increased by focusing on “pregnant” conditions - defined as conditions that reliably gave crystals when seeds were present, but which otherwise gave no crystallization.

Keywords: crystallization-1, microseeding-2, random-3

MS92.P05

Fluorescence anisotropy-based macromolecule crystallization screening

Marc L. Pusey, iXpressGenes Inc., 601 Genome Way, Huntsville AL 35806, (USA). E-mail: marc.pusey@ixpressgenes.com

Screening for protein crystallization is typically a highly digital process, with the screening results being interpreted as yes (a crystal) or no (no crystal). This approach leads to the routine setting up of hundreds or thousands of screening experiments to obtain the ever elusive crystal. However, there may be many screening outcomes that are close to crystallization conditions but which are discarded from subsequent consideration as they gave a clear or an amorphous precipitate result. A potentially better approach would be to first determine those conditions which are proximal to those necessary for crystallization, then concentrate on them for subsequent optimization rounds.

We are developing a fluorescence anisotropy-based screening method for just this purpose. The method measures the concentration-dependent changes in the rotational rate of the macromolecule in response to the test screening conditions. Difficulties in reproducibly pipetting sub-µL volumes led to inclusion of the intensity data as a quality check, and it rapidly became apparent that intensity also increased with likely, and found, lead conditions. The method is currently implemented using 1536 well plates, assay solutions consisting of 3 µL of a solution composed of 0.6 µM protein solution and 2.4 µM precipitant solution. Eight solutions are used for each precipitant concentration; 1 buffer brand and 7 protein concentrations, typically ranging from 0.2 to 4.0 mg/mL. We are at present working on speeding up the data acquisition process (it currently takes ~1.5 hrs to acquire a data set) and reducing the assay solution volume, with our target volume being in the 10-20 nL range.

Keywords: screening, rapid, fluorescence

MS92.P06

Structural and biochemical characterization of HP0315 as a VapD protein with an endoribonuclease activity from Helicobacter pylori

Kiyoung Lee, Ae-Ran Kwon, Ji-Hun Kim, Sung jean Park, , Hookang Im , Yu-Hong Min , Ingyun Lee, Kyueyun Lee and Bong-Jin Lee, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, (Korea). E-mail: kiyoungh1983@snu.ac.kr

Virulence associated protein D (VapD) found from various organisms, but not much information about VapD is known. Recently, the paper about novel ribonuclease family of Cas2 was reported and mentioned the relationship with VapD (1). Here, we show the first structure of a member of VapD and raise a theory about relationship among VapD, Cas2 family and toxin-antitoxin (TA) systems. The crystal structure of HP0315 from Helicobacter pylori was solved at 2.8 Å resolution with a modified ferredoxin-like fold. The structure of HP0315 is very similar to that of Cas2 family. Like Cas2 proteins, HP0315 has an endoribonuclease activity. HP0315 cleaved miRNA just before A and G nucleotides preferentially, which means that HP0315 has a purine specific endoribonuclease activity. Mutagenesis studies of HP0315 revealed several residues are important for RNase activity. HP0315 is arranged as an operon with HP0316 which recently was turned out to be antitoxin-related protein. However, HP0315 is not a component of TA system. HP0315 could be explained as an evolutionary