MS94.P01

Inclusion of the insecticide endosulfan in cyclodextrins
Dyanne Cruickshank, Susan A. Bourne, Mino R. Caira, Department of Chemistry, University of Cape Town, Rondebosch, 7701, (South Africa). E-mail: dyanne.cruickshank@uct.ac.za

Most agrochemicals are highly insoluble in water, highly toxic and have reduced stability against chemical and photolytic degradation which makes them environmentally hazardous [1]. Endosulfan is an organochlorine insecticide and acaricide with a combination of these poor physical properties. Improving these physical properties has been attempted by complexing endosulfan with native and derivatised cyclodextrins (CDs).

Solid state inclusion complexes have been formed with β-CD, γ-CD and a derivatised CD known as DIMEB (heptakis(2,6-di-O-methyl)-β-CD). The single crystal X-ray structures of both the β-CD complex and the DIMEB complex of the symmetrical β-endosulfan isomer have been elucidated. The asymmetric unit of the DIMEB-β-endosulfan complex contains two DIMEB molecules with a disordered guest molecule situated in each (Figure). This complex shows a novel packing arrangement as the DIMEB molecules pack head-to-tail in infinite columns with adjacent columns parallel to one another rather than anti-parallel.

An amorphous CD, randomly methylated β-CD (RAMEB), was also investigated for inclusion with endosulfan using PXRD. Kneading experiments between RAMEB and endosulfan resulted in a semi-crystalline material with distinct peaks at low 2θ values. The peaks do not match those of the pure crystalline guest material but do show some similarity to the DIMEB-β-endosulfan complex PXRD pattern.

An understanding of the host-guest interactions forms an essential part of complex characterisation needed for developing new agrochemical formulations.

Keywords: cyclodextrin, inclusion, crystal structure

MS94.P02

180° Domain detection by surface phase sensitive second harmonic generation microscopy of polar materials
Jürg Hulliger, Hanane Aboulfaddl, Department of Chemistry and Biochemistry, University of Berne (Switzerland). E-mail: juerg.hulliger@iac.unibe.ch

Phase Sensitive Second Harmonic Generation Microscopy (PS-SHM) technique [1], [2] was developed to map 180° domains of polarizations. Domain contrast is achieved by using the interference effect between SHG responses of a sample and a homogeneous reference material. Previously it was shown [1] that interpretation of domain mapping is simple if the crystal thickness is homogeneous and in the range of or below the coherence length \(l_c \). Our objective is to demonstrate experimentally, that PS-SHM technique can be performed using a sufficiently flat surface of samples irrespective of their thickness. This is offering most feasible conditions to investigate various as grown materials, and especially those which could not be obtained in \(\mu m \) thick layers.

Using the PS-SHM technique in transmission mode, we have demonstrated [3] either a mono- or bi-polar state for different nonlinear optical crystals such as \(N,N \)-dimethyl-2-acetamido-4-nitroaniline (DAN), 2-cyclo-octylamino-5-nitropyridine (COANP), a channel-type inclusion compound of perhydrotriphenylene (PHTP) / \(N,N \)-dimethyl-3-nitroaniline (DMNA), potassium dihydrogen phosphate (KH₂PO₄) crystals stained by dyes and the zeolite AlPO₄-5 loaded by 4-(dicyanomethylen)-2-methyl-6-(4-dimethylaminostyril)-4H-pyran (DCM). For all these cases a phase contrast was found irrespective of thickness and surface quality.

In this work, we have demonstrated that the application of PS-SHM can be realized under non phase matching conditions of samples much thicker than the coherence length. Further development is exploring the possibility to perform PS-SHM under reflection.

Keywords: microscopy, phase contrast, polarity

MS94.P03

Molecular recognition and cluster size in supersaturated solutions of NaClO
Sabino Veintemillas-Verdaguer, Zoubir El-Hachemi, Joaquín Crusats, J. Michael McBride,* Josep M. Ribó, *Centro de Astrobiologia, CSIC-INTA, Madrid (Spain) and Department of Biomaterials and Biospired Materials, Instituto de Ciencia de Materiales de Madrid CSIC, Madrid (Spain). *Organic Chemistry Department and Institute of Cosmos Science (ICC), Universitat de
The classical nucleation theory is applied to the modelling of the cluster size distribution in supersaturated boiling sodium chlorate solutions. It was recently reported by the authors that under these conditions a strong bias of enantiomorphous crystals of the same chiral sign is obtained [1]. Given the catastrophic nature of the crystal nucleation process in boiling highly concentrated solutions, it was reasonable to hypothesize that the chiral selection was a result of molecular recognition among the clusters by collisions in the metastable period. Experimental support of this assumption was obtained recently by us in a series of experiments where the supersaturated solution carefully extracted, before the appearance of the first crystals, was also able to develop nearly homochiral samples [2]. Nevertheless, this mechanism only could be operative if the subcritical clusters have enough size to have a definite chiral sign.

In this contribution we evaluated the cluster size distribution in equilibrium with isolated molecules of sodium chlorate using the classical approach applied to cubic clusters using the formalism of K. Sangwal [3] and the value of 0.012 J/m² for the solid-solution surface energy for the sodium chlorate [4]. The critical cluster obtained by the degree of supersaturation attained at the onset of the nucleation contained 61 chlorate units, a cluster of such size clearly has a definite chirality as supposed, i.e. it cannot racemize. The metastability of the system was evaluated assuming that the nucleation appears when the degree of supersaturation attained at the onset of the nucleation is formed giving a result comparable with the experimental. Finally the wall effect, (high temperature gradients are always present in boiling systems near the heating wall), was also simulated showing a shift towards smaller cluster sizes in hotter zones. This phenomenon is important because it drives the partial dissolution of the clusters (recycling), an effect of importance in all the theoretical symmetry breaking scenarios. What is more, the calculations showed that this recycling increases with the supersaturation. As a result the degree of the homochirality of the population of crystals obtained should increase with the supersaturation and this is what effectively was observed.

Keywords: nucleation theory, symmetry breaking, boiling crystallization

MS94.P04

The effect of solvents on the dissociation and association of decavanadates

Tatsuhio Kojima, a Mark R. Antonio, and Tomoji Ozeki, a Department of Chemistry and Institute of Cosmos Science, University of Tokyo, (USA). Department of Chemistry, Yale University, New Haven CT (USA). E-mail: tkojima@chem.titech.ac.jp

Tetra-n-amylammonium decavanadates show both the dimeric and monomeric hydrogen-bonded molecular complexes in the crystalline state, depending upon the protophobic or protophilic nature of the solvent. On the one hand, protonated decavanadate anions self-assemble into self-complementarity hydrogen-bonded dimers, ([H_{10}V_{10}O_{28}]^{3+})₄⁺, when crystallized with acetonitrile. On the other hand, the form hydrogen bonds with solvent molecules and remained monomers, [H_{10}V_{10}O_{28}]^{5+}, when crystallized with 1,4-dioxane. [1] By using SAXS and 'H- and 'V-NMR, we revealed that the behavior of the protonated decavanadate anions between the dimers and monomers depends on the protophobic and protophilic nature of acetonitrile and 1,4-dioxane, respectively, also in the solution state. [2]

Herein, in order to compare the effect of other solvents on the dissociation or association between the dimers and monomers, we measured SAXS, 'H-NMR, and 'V-NMR spectra of [[(C₅H₁₂)₃N][H_{10}V_{10}O_{28}]] in acetone, acetonitrile, tetrahydrofuran, 1,4-dioxane and the mixtures of these solvents. Radius of gyration, Rg, estimated from the observed SAXS data was employed as a measure of the dimer formation. In order to determine the average Rg, we used three fitting methods (Guinier, form factor, and pair-distribution analyses) on the SAXS data that were collected at 12ID-B and 12ID-C beamlines in APS. Rg for the solution in 100% acetonitrile and 100% acetonitrile were 9.9(1) Å and 5.8(1) Å, respectively. These values agree with those calculated from the crystal structure 5.1 Å for the dimer, ([H_{10}V_{10}O_{28}]^{1+}), indicating that the decavanadate anions associate to the dimer. On the other hand, Rg for the solution in tetrahydrofuran was 4.3(3) Å. This value is between those for the dimer (5.1-6.6 Å) and monomer (3.5 Å), indicating that a certain amount of decavanadate anions dissociate into the monomers. In case of the system of acetone and 1,4-dioxane, the dissociation into the monomers was completed in the mixed solvent consisting of 20% acetone and 80% 1,4-dioxane. Therefore, tetrahydrofuran has a weaker effect on the dissociation of the dimer into the monomers than 1,4-dioxane. These results are also confirmed by 'H-NMR and 'V-NMR spectra.

Keywords: SAXS, solvent, assembly

Spontaneous mirror symmetry breaking in the crystallization of NaClO₃

Josep M. Ribó, a Zoubir El-Hachemi, a Joaquim Crusats, a J. Michael McBride, b Sabino Veintemillas-Verdaguer, a Department of Organic Chemistry and Institute of Cosmos Science, University of Barcelona (IEEC-UB) Barcelona (Spain). aDepartment of Chemistry, Yale University, New Haven CT (USA). Centro de Astrobiología, CSIC-INTA, Madrid (Spain) and Department of Biomaterials and Bioinspired Materials, Instituto de Ciencia de Materiales de Madrid CSIC, Madrid (Spain). E-mail: jmribo@ub.edu

A transition towards chirality in the crystallization of NaClO₃ in supersaturated boiling solutions is reported [1]. The results agree with previous one obtained by wet grinding and point to a different mechanism than those of previous reports originated by secondary nucleation growth of a single chiral Adam crystal. The phenomenon is discussed here on the basis of a thermodynamic scenario of non-uniform temperature distribution in the metastable supersaturated state. During this period, the evolution of the population of sub-critical nuclei takes place without any other noticeable crystal growth process. The fast evolution of supercritical nuclei and the slow evolution of sub-critical nuclei takes place without any noticeable crystal growth process. The fast evolution of supercritical nuclei and the slow evolution of sub-critical nuclei takes place without any noticeable crystal growth process. The fast evolution of supercritical nuclei and the slow evolution of sub-critical nuclei takes place without any noticeable crystal growth process. The fast evolution of supercritical nuclei and the slow evolution of sub-critical nuclei takes place without any noticeable crystal growth process. The fast evolution of supercritical nuclei and the slow evolution of sub-critical nuclei takes place without any noticeable crystal growth process.