MS98.P03

Unusual orbital and atomic ordering in tetragonal phase of MgTiO₄
Talanov, V.M., Shirokov, V.B., Ivanov, V.V., Talanov, M.V.
Department of Chemical Technology, South-Russian State Technical University, Novocherkassk, (Russia). Southern Scientific Center of Russian Academy of Sciences, Rostov-on-Don, (Russia). Research Institute of Physics, Southern Federal University, (Russia). E-mail: valtalanov@mail.ru

It is theoretically shown that the structure of the tetragonal phase MgTiO₄ contains metal-pico-an clusters: two types of dimers Ti₂, two types of helices along the axis of the second and fourth-order of tetragonal cell and two types of one-dimensional infinite strands of titanium ions. Such unusual structural features of magnesium titanite arise due to atomic and d-orbital ordering.

A theory of structural phase transition in MgTiO₄ is presented: the symmetry of the order parameter, thermodynamics and mechanisms of formation of atomic and orbital structure of the low-symmetry phase MgTiO₄ are studied. The critical order parameter, which induces a phase transition, has been stated; it is shown that the calculated structure of the tetragonal phase MgTiO₄ is formed as a result of the displacements of magnesium, titanium and oxygen, the ordering of oxygen atoms, ordering dₓ, dᵧ, dₜ – orbitals. It is proved that the contribution of non-critical representation in the ions displacements is insignificant.

In the framework of the sixth degree of the components of the order parameter of the Landau theory the possible phase diagram is constructed and it is shown that the changes of phase states can be carried out as a result of phase transitions of second and first order: high-symmetry phase borders with two low-symmetry phases along the lines of transitions of second order, and the border between low-symmetry phases is the line of the phase transitions of first order.

The proposed theory is in accordance with experimental results [1].

Keywords: Spinel, Orbital, Ordering

MS98.P04

Self-assembly of nanoparticles into planar modulated superstructures
Michael Engel
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan. E-mail: engelm@umich.edu

The advance in the synthesis of nanoparticles and colloids opens up the possibility to use them as building blocks for self-assembling novel materials. Ordered structures are especially interesting because they have unique photonic and electronic properties. Among the most complex ordered phases are commensurately and incommensurately modulated crystals. Although frequently found on the atomic scale in

MS98.P05

Crystal structures of new superconducting compounds, LnT₂Zn₂₀ (Ln = La, Pr, T = Ru, Ir).
Yoshitaka Matsushita, Takahiro Onimaru, Keisuke T. Matsumoto, Akira Sato, and Toshio Takabatake.

“Institute for Advanced Materials Research (IAMR), Hiroshima University, Higashihiroshima, Hiroshima 739-8530, (Japan). *Department of Quantum Matter, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima 739-8530, (Japan). **Institute for Advanced Materials Research (IAMR), Hiroshima University, Higashihiroshima 739-8530, (Japan). E-mail: Matsushita.Yoshitaka@nims.go.jp

In recent years, the cluster compounds and/or the compounds having cage-like substructure have attracted much attention not only in chemistry field but also in field of solid-state physics, to show rich interesting properties, since the discovery of fullerenes and fullerides. For example, in solid-state field, these compounds (especially, having rattled atoms in the cluster/cage structure) show various kinds of physical properties such as strong electron-phonon coupling superconductivity [1], heavy fermion behaviour [2], and thermoelectricity with glass-like thermal conductivity [3].

Last year, we found new superconducting compounds; LnT₂Zn₂₀ (Ln = La, Pr, T = Ru, Ir), showing superconducting transitions at Tc around 0.2 K (LaRu₂Zn₂₀), 0.6 K (LaIr₂Zn₂₀), and 0.05 K (PrIr₂Zn₂₀). Especially, PrIr₂Zn₂₀ is the second example of superconductor in the intermetallic compounds containing Pr atom. [4] Before taking superconducting state, these compounds take structural transitions, but do not have any magnetic transitions. At room temperature, the crystal structure of these compounds basically takes cubic CeCr₁₋₂Al₁₋₂ type structure (Fd-3m). [5] Details of the crystal structure are not so clear.

To understand the detail of this crystal structure, we carried out single-crystal diffraction technique at 293 K. Our used single crystals are grown by Zn self-flux method. [6] In the structure, Ln atom locates in the cage structure formed by 16 Zn atoms. On the other hand, T atom is surrounded by 12 Zn atoms forming another cage structure. Both Ln and T atom locate at crystallographically independent sites. However, some of Ln sites show the site disordering behaviour. More details will be presented.

MS98.P06

Structure of a polymeric Ce(III) complex containing pyridine-2,6-dicarboxylic acid
Mahboubeh A. Sharifi,* Masoumeh Tabatabaei,* Ahmad Saeidifar,*
*Department of Chemistry, Qom Branch, Islamic Azad University, Qom, (Iran), *Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, (Iran). E-mail: sharifi44@yahoo.com

Coordination polymers of rare earth elements have received significant attention in recent years because of their potential optical, magnetic, and porous properties, especially for the carboxylates [1–4]. The large ionic radii of rare earth elements together with the coordination flexibility of lanthanide ions can lead to unusual structural topologies and new framework families [5]. Here we report the synthesis, characterization and crystal structure of the polymeric [Ce(pydc)(H₂O)] ∙ 2H₂O, complex (I), obtained from the reaction of Cerium(III) nitrate with the pyridine-2,6-dicarboxylic acid, dipicolinic acid (pydcH₂) and 2-aminoptyrimidine (ampy) in 1:1:1 molar ratio in basic media. Polymeric complex was characterized by FT-IR spectroscopy and X-ray diffraction. X-ray crystal structural analysis reveals that the compound belongs to the triclinic space group P T with cell parameters a = 10.407(4) Å, b = 11.795(5) Å, c = 13.770(6) Å,α = 93.852(2)°, β = 111.142(2)° and γ = 111.105(2)°. The molecular structure consists of two crystallographic independent pairs of Ce³⁺ ions in the unit cell (Fig. 1). The coordination polyhedron of the ten-coordinated Ce1 ion is a distorted bicapped trigonal prism with different wave vectors takes place. In the mathematical expression above it is also assumed that the temperature range is significantly lower than the structural instability point, also called spinodal point. Here we present a reciprocal-space approach for inhomogeneous systems, based on the ring approximation [2], [3]. This concept deals with cooperative reciprocal-state modes and takes into account their statistical coupling, both in atomic interaction and in mutual arrangement of particles, much unlike traditional real-space statistical thermodynamic approaches.

Using the ring approximation in the framework of kinetic atomic density functional approach [4], we describe configurational self-organization in the amorphous state. The Fourier transform of the relaxation time is given by the following expression:

\[\tau(q,T) = \frac{kT}{V_{q}^{eff}(T)} \]

where \(q \) is a reciprocal lattice vector, temperature-dependent coefficient \(V_{q}(T) \) accounts diffusive properties of the system, \(V_{q}^{eff}(T) \) is the “renormalized” effective pairwise interaction potential [1], and it is taken into account that interference of atomic interaction modes with different wave vectors takes place. In the mathematical expression above it is also assumed that the temperature range is significantly lower than the structural instability point, also called spinodal point.

Equation (1) leads to the conclusion that the dominant mode, corresponding to the minimal negative value of \(V_{q}^{eff}(T) \), develops the most intensively. For the Dzugutov-like potential, widely used in simulations of the amorphous state, the function \(V_{q}^{eff}(q) \) exhibits a flat region of the dominant modes for a certain range of potential parameters. Consequently, a set of these modes possesses the same value lead to the long-living ordered structural states, i.e., clusters, recently revealed by X-ray cross-correlation analysis [5] of coherent scattering data.

Fig. 1. ORTEP plot showing the coordination environments of cerium ions in I.

MS98.P07

Reciprocal space statistical thermodynamics of inhomogeneous disordered systems
Marinya Raschchupkyna,* Volodymyr Bugaev,* Alexander Udyanovsky,* Miguel Castro-Colin, Peter Wochner,* *Department of Low-dimensional and Metastable Materials, Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Stuttgart (Germany). *Max Planck Institute for Iron Research GmbH, Düsseldorf (Germany). E-mail: rasschupkyna@is.mp.d.mpg.de

Within the last decades a lot of efforts were made in order to understand the nature of dynamical heterogeneities in disordered systems, e.g. supercooled liquids, amorphous alloys. Nevertheless the nature of the amorphous state formation, a fundamental problem of condensed matter physics, is not completely understood.

It has been recently shown [1] that the dynamic origin of heterogeneous dynamics might be a result of critical-like fluctuations of static structural order. This is a concept that counters the currently accepted trend.

Here we present a reciprocal-space approach for inhomogeneous systems, based on the ring approximation [2], [3]. This concept deals with cooperative reciprocal-state modes and takes into account their statistical coupling, both in atomic interaction and in mutual arrangement of particles, much unlike traditional real-space statistical thermodynamic approaches.

Using the ring approximation in the framework of kinetic atomic density functional approach [4], we describe configurational self-organization in the amorphous state. The Fourier transform of the relaxation time is given by the following expression:

\[\tau(q,T) = \frac{kT}{V_{q}^{eff}(T)} \]

where \(q \) is a reciprocal lattice vector, temperature-dependent coefficient \(V_{q}(T) \) accounts diffusive properties of the system, \(V_{q}^{eff}(T) \) is the “renormalized” effective pairwise interaction potential [1], and it is taken into account that interference of atomic interaction modes with different wave vectors takes place. In the mathematical expression above it is also assumed that the temperature range is significantly lower than the structural instability point, also called spinodal point.

Equation (1) leads to the conclusion that the dominant mode, corresponding to the minimal negative value of \(V_{q}^{eff}(T) \), develops the most intensively. For the Dzugutov-like potential, widely used in simulations of the amorphous state, the function \(V_{q}^{eff}(q) \) exhibits a flat region of the dominant modes for a certain range of potential parameters. Consequently, a set of these modes possesses the same value lead to the long-living ordered structural states, i.e., clusters, recently revealed by X-ray cross-correlation analysis [5] of coherent scattering data.

C806

Poster Sessions

Keywords: crystallochemistry, superconductor, cluster

Keywords: cerium(III), polymer, complex