Self-assembly of highly charged fullerene fragment: Structural mystery resolved. Marina A. Petrukhina, Alexander V. Zabula, Alexander S. Filatov, Sarah N. Spisak. Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
E-mail: mpetrukhina@albany.edu

The long-standing mystery behind the structure formed by the highly reduced smallest fullerene fragment, the coronulene tetraanion $C_{20}H_{10}^{-4}$, is now resolved [1]. Notably, the above coronulene anion having one electron per five carbon atoms is more electron rich than the hexaanion of C_{60}^{-6} (one electron per ten carbon atoms). The first single-crystal X-ray diffraction analysis of its lithium salt reveals the formation of a sandwich-type supramolecular aggregate with a high degree of alkali metal intercalation. In contrast to the previously proposed model based on in situ NMR spectroscopy study, it is now revealed that five Li$^{+}$ ions are sandwiched between the two tetrareduced coronulene decks to form the supramolecular dimer in the solid state. The latter also exists in solutions, as revealed by 7Li NMR spectroscopy. These results establish a new paradigm for lithium intercalation between the curved carbon surfaces of buckybowls, fullerenes, and nanotubes. Structural deformations caused by adding multiple electrons to a bowl-shaped polyarene [2, 3] as well as self-assembly of the resulting non-planar carbocations in different solvent media will also be discussed and compared.

Keywords: curved polyarene; multi-electron reduction; metal binding

Exploring the solid state conformation and assembly of cyclic peptides derivatives. Loredana Erra, Consigilia Tedesco, Giovanna Cerasuolo, Chiara De Cola, Brunello Nardone, Irene Izzo, Gavin Vaughan, Francesco De Riccardi. ESRF, 6 rue Jules Horowitz, BP220, 38043 Grenoble, France, Dipartimento di Chimica e Biologia, Universitá di Salerno, via Ponte don Melillo, I-84084 Fisciano, Italy
E-mail: loredana.erra@esrf.fr

The molecular conformation control is a key need in drug design: in fact, being inspired from the biological world, it is evident that the structure determines each single function a biological system expresses. The structure-function relation is the concept to keep in mind to achieve results in drug related research fields.[1] Over the years it has been proved that the polypeptides beeing chemically similar to the proteins, are the best candidates to interact with them: in particular, cyclic peptides form a class of compounds of crucial impact for the treatment of several diseases [2]. The preference on the cyclic compounds over the linear ones has some rationale: usually the conformational rigidity ensured by the cyclization corresponds to a better chemical stability together with an increased receptor selectivity. Indeed extensive efforts have been also devoted to synthetise peptidomimetic compounds having an increased proteolytic stability because of their abiotic character [3]. Among them an interesting class of molecules are the cyclo peptoids. In general peptoids are oligomers of N-substituted glycine. They differ from peptides because the side chain is attached to the backbone amide nitrogen instead of the α-carbon, the peptoid backbone is achiral and the lack of the amide proton prevents the formation of H-bonds involving this site. Moreover tertiary amide bonds can isomerise between cis and trans conformation [4]. Here we report and analyze the solid state molecular conformation and the crystal structure of two new derivatives: the cyclo hexa N-(benzyl) glycine 1 and cyclo $[N$-(benzyl)glycine-N-(t-butyldiphenylsilyloxyethyl)glycine].

Moreover we compare our results with the few ones already reported [3] with the aim to rationalize how the chemical interactions inside the structures define both the molecular conformation and the general solid state assembly.

Keywords: peptoids; conformation; crystal structure

Fig. 1 Molecular structure as obtained by X-ray single crystal diffraction for the compounds 1 (left) and 2 (right).

References

Keywords: peptoids; conformation; crystal structure