Structure of eukaryotic 2′-O-ribose methyltransferase in complex with mRNA cap analogue.

Miroslaw Śmietański1,2, Maria Werner3, Elżbieta Purta3, Katarzyna H. Kamińska3, Małgorzata Durawa3, Marcin Nowotny3, Janusz M. Bujnicki1,2, 1Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Poland, 2Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Poland, 3Laboratory of Structural Bioinformatics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poland

E-mail: msmietanski@iimcb.gov.pl

The 5′ cap structure is characteristic for the eukaryotic mRNA. This modification is critical for mRNA stability and translational efficiency. It contains 7-methylguanosine (m7G) linked by inverted 5′-5′ triphosphate bridge to the rest of mRNA [1]. There are also additional methylations 2′ oxygens of the riboses of the first two transcribed nucleotides - Cap01 and Cap02 structure [2]. Here we present the crystal structure of a methyltransferase which is responsible for the formation of Cap01 structure in eukaryotes.

The full-length protein was produced in E.coli expression system. Based on bioinformatics predictions and limited proteolysis assays a stable and soluble truncation variant of the protein was identified, overexpressed and purified. Co-crystallization trials with m7GpppG and S-adenosylmethionine (SAM) as the methyl group donor were performed and yielded crystals that diffracted X-rays up to 1.95 Å. The structure of the protein together with m7GpppG and SAM was solved using anomalous signal for selenomethionine derivative. In comparison to previously published structure of viral orthologs of 2′-O-ribose methyltransferases [3] interesting differences in the cap binding pocket were observed. To verify the structure, we methylated activity assays. Significant differences in activity were observed and they were dependent on localization of amino acids responsible for interactions with particular atoms of mRNA 5′ cap analogue.

Acknowledgements: This research was supported by a MNiSW grant (N301 4253 38) to J.M.B., the FNP START fellowships to K.H.K. and E.P. and ERC-StG grant and FNP TEAM grant to J.M.B.http://www.nauka.gov.pl/


Keywords: methyltransferase, cap structure, structure of a complex

Structural and Functional Studies of FNE, a Bacterial Adhesion Protein of Streptococcus Equi: FNE Interacts with the Gelating Binding Domain of fibronectin (GBD), located near the N-terminus. We study the structural and functional aspects of this interaction as a model for bacterial adhesion to the GBD. We were unable to crystallize FNE or a truncated version lacking the disordered C-terminal peptide. We therefore developed artificial proteins that bind to FNE with the objective to create complexes of these proteins in complex with FNE and amenable to crystallization. We made use of a library coding for artificial protein constructed by repetition of a pattern designed HEAT from a thermophilic archaeal protein [1]. Three artificial proteins interacting with the FNE have been obtained by phage-display and the corresponding complexes with FNE were tested for crystallization. We will present this new innovative cristallogenesis technique and the structure of the complex FNE / artificial partner obtained at 1.83 Å of resolution.


Keywords: Biomacromolecule structure ; Crystallisation ; Extracellular matrix