MS43-P15

2,3-Dibromo-3aH,5H-4-oxa-9b-aza-cyclopenta[a]naphthalene-1-one

Mustafa Odabasoglu & Orhan Büyükgüngör

Pamukkale University, Department of Chemical Technology, 20020, Denizli-Turkey.

Ondokuz Mayıs University, Department of Physics, 55139, Samsun-Turkey

E-mail: mustafaodabasoglu@gmail.com

1H-pyrrol-2(5H)-one (I) and 2,4-dihydro-1H-benzo[d][1,3]oxazine (II) units are commonly present in synthetic and natural products as simple structures or as a part of complex systems. A search of the literature revealed that some 1H-pyrrol-2(SH)-one derivatives have important effective the central nervous system (CNS), therefore 8a-phenyl-tetrahydro-2H-pyrrolo[2,1-b][1,3]oxazine-6(7H)-one to be used such as anti-depressants over the past 30 [1]. Some 1,3-benzoxazine derivatives have anti-HIV [2], anti-viral [3], anti-bacterial [4], anti-malarial [5] activities and some of them uses as dopamin and serotonin receptor [6]. It was assumed that compounds having both 1H-pyrrol-2(SH)-one and 1,3-benzoxazine residues in the same molecule may possess some interesting biological activities. With this in mind, the synthesis and structure determination of the title compounds (III) were undertaken.

The crystal structure of the (III) exhibit C-H…O, C-H…Br and C-Br…O interactions generating an edge-fused R66(31) ring motif [7]. There are two symmetry-independent molecules in the asymmetric unit. The dihedral angle between the pyrrol-2-one and aromatic rings in (III) are 26.5(2)° and 22.1(2)°.

Keywords: Pyrrol-2-one, and 1,3-benzoxazine, X-Ray Analysis.

MS43-P16

Solid-State Photochromism of Chromenes.

Keiichiro Ogawa

The University of Tokyo, Japan. Hokkaido University, Japan.

E-mail: Keiichiro.Ogawa@post.c.u-tokyo.ac.jp

Solid-state photochromism of benzopyrans and naphthopyrans, which are often generically referred to as chromenes, has been studied extensively. The mechanism of the photochromism has been investigated almost exclusively for the reactions in solution and proposed to proceed through the following mechanism (Scheme I): Upon UV irradiation of colorless closed form (CF), cleavage of the C(sp3)-O bond of the pyran ring takes place to yield a metastable ring-opened species referred to as CC form. The CC form undergoes rotation about the C2-C3 bond to give stable photoproducts, TC and TT forms. Solid-state photochromism of chromenes, however, has been reported only in a few papers and the mechanism of the reactionsremains unexplored.

We have investigated solid-state photochromism of chromenes in the temperature range between 300 and 80 K [1]. Variable-temperature diffuse reflectance spectroscopy of microcrystalline powders showed that the extent of photocoloration was greatly enhanced at low temperatures. All 1H-pyrrol-2(SH)-one and 1,3-benzoxazine residues in the same molecule may possess some interesting biological activities. With this in mind, the synthesis and structure determination of the title compounds (III) were undertaken.

The crystal structure of the (III) exhibit C-H…O, C-H…Br and C-Br…O interactions generating an edge-fused R66(31) ring motif [7]. There are two symmetry-independent molecules in the asymmetric unit. The dihedral angle between the pyrrol-2-one and aromatic rings in (III) are 26.5(2)° and 22.1(2)°.

Keywords: photochromism; solid-state reactions;solid-state spectroscopy