
book reviews

530 doi:10.1107/S0108767313018825 Acta Cryst. (2013). A69, 530–532

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

book reviews
Works intended for this column should be sent direct to the Book-Review Editor, whose address appears in this

issue. All reviews are also available from Crystallography Journals Online, supplemented where possible with

direct links to the publisher’s information.

Geometry of Crystallographic Groups.

By Andrzej Szczepański. World Scien-
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The crystallographic groups are

critical elements of any crystal-

lographer’s toolkit. As the subject is

extended and refined, the resulting

tools become more powerful and

useful. This book is an introduction to

the theoretical foundations of the

subject.

It is a text for a second-year graduate course in mathe-

matics, so it is a mathematically advanced introduction as well

as a snapshot of (part of) the current state of the subject.

Although most practicing crystallographers will probably

not be interested in investing in this book, it does provide a

useful update on developments in mathematical (particularly

geometric) crystallography. So this review will focus on what

this book tells us about how mathematicians view the crys-

tallographic groups.

The book begins at the geometric core of crystallography

with the three fundamental results of Ludwig Bieberbach,

published from 1910 to 1912, that summed up the nineteenth-

century construction of the crystallographic groups. Bravais,

Schoenflies, Federov and others had developed tables of 219 –

or 230, depending on how you counted them – classes of

crystallographic space groups on three-dimensional space. In

1900, David Hilbert challenged the mathematical community

with 23 questions, and the 18th consisted of three parts

(Milnor, 1974). The first part of the Eighteenth Question

was whether it was true that for every integer n, there were

finitely many ‘isomorphism classes’ of crystallographic groups

on n-dimensional space.

Here is a little background. Let’s focus on three-dimen-

sional space. One starts with the notion of an isometry, a

function f from 3-space onto itself such that for any two points

x and y, the distance from x to y is the same as the distance

from f(x) to f(y). It is a standard exercise in (graduate) linear

algebra that an isometry is affine: in vector notation, there

exists a matrix M and a vector b such that for any vector x in 3-

space, f(x) = Mx + b. During the nineteenth century, crystal-

lographers proposed that a given crystal would have a group G

of isometries that act as symmetries of the crystal: for a

symmetry g and a point x in 3-space, there would be an atom at

x if and only if there was an atom at g(x). Such a group of

symmetries of a given crystal should have the following

properties:

(i) There would be a fixed positive distance, call it d, such

that given atoms at the distinct points x and y, the distance

from x to y is at least d.

(ii) If there was an atom at x, then the set of all positions

g(x), for g in G, is the orbit of x. That is, the orbit is the set of

points occupied by atoms of the same ‘kind’ as the original

atom at x (in terms of placement in the crystal). For a crystal,

one would want all the atoms distributed into finitely many

orbits (e.g. one orbit for the carbon atoms in diamond, two

orbits for the silicon and oxygen atoms in quartz, and so on).

(iii) The crystal would extend in all directions, in the

following sense. If there was an atom at a point x, then for any

plane there would be an atom at a point on the opposite side

of the plane from x.

Such a group of symmetries is called crystallographic.

In 3-space, Bieberbach’s three results become:

(1) If G is a crystallographic group, then it has a ‘lattice’

subgroup L generated by translations in three independent

axial directions. Recalling that the group consists of affine

functions, i.e., of the form f(x) = Mx + b, Bieberbach also

showed that there were only finitely many matrices M in the

‘point’ group of G.

(2) Two groups G and H are isomorphic if they have the

same addition or multiplication table. For example, any two

lattice groups in 3-space are isomorphic, even if they share no

translations: there is a one-to-one correspondence between

the two groups from which one can derive the same addition

table. Although there are infinitely many crystallographic

groups, they fall into finitely many isomorphism classes

(where any two groups in the same isomorphism classes are

isomorphic).

(3) Finally, he proved that for any two isomorphic crystal-

lographic groups, there is an affine function of 3-space that is

also an isomorphism from one group to the other. This is what

makes the diagrams of the (isomorphism classes of) crystal-

lographic groups possible.

This much is the first half of the core of the book. Chapters

1 and 2 concern preliminaries and the Bieberbach results,

respectively. In Chapter 2, Szczepański follows the presenta-

tion in Joseph Wolf’s classic Spaces of Constant Curvature

(Wolf, 1974). The rest of the book falls into two parts. Chap-

ters 3, 4 and 5 concern the generation and classification of the

crystallographic groups; Szczepański concentrates on the

classification methods of Hans Zassenhaus, of Eugenio Calabi,

and that of Louis Auslander and Alphonse Vasquez. Chapters

6, 7, 8 and 9 make up a sample of recent topics. Let us look at

the second half of the core of the book, Chapters 3, 4 and 5.

Suppose that one desired to generate, for a given n, a

catalog of the (isomorphism classes of the) n-dimensional

crystallographic groups. Or at least some nice subcollection of
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these groups. The 219 three-dimensional crystallographic

groups were obtained during the late nineteenth century, and

Hans Zassenhaus employed modern techniques to obtain the

4783 four-dimensional crystallographic groups (Brown et al.,

1948). Here is the idea.

Suppose that one has something that is difficult to count –

like the collection of four-dimensional crystallographic

groups. It may be helpful to find some easily enumerated

set that can be put into a correspondence with the collection,

and in enumerating that set one enumerates the collection.

To this end, Szczepański employs a popular workhorse, the

cohomology group. For a point group G, the (‘second’)

cohomology group of G has some elements for each crystal-

lographic space group of point group G, and cohomology

groups are easier to enumerate. The Zassenhaus approach is

perhaps the most popular enumeration algorithm and, for

example, is the mechanism underlying the program CARAT

(Opgenorth et al., 1998; http://wwwb.math.rwth-aachen.de/

carat/), a package within the Groups, Algorithms, and

Programming (GAP) system (The GAP Group, 2013).

Szczepański uses CARAT for several of his computations.

The other two methods in these three chapters concentrate

on torsion-free crystallographic groups: a crystallographic

group is torsion-free if, given any of its elements f and any

positive integer k, fk is not the identity. For example, the

wallpaper group pg, which consists of translations and glide

reflections, is torsion-free for the following reason. Repeating

a glide any number of times, or repeating a translation any

number of times, will not result in the identity. On the other

hand, the wallpaper group p2, which is generated by two

translations and a half-turn, is not torsion-free, as the half-

turn, repeated twice, is the identity. Torsion-free crystal-

lographic groups are usually called Bieberbach groups.

The last four chapters consist of ‘the most interesting results

(in our opinion) from recent years’. Two of these – the chapter

on spin structures and the chapter on Kähler structures –

concern the theory of ‘flat manifolds’. Curves are one-

dimensional manifolds (and lines and line segments are flat),

surfaces are two-dimensional manifolds (and planes are flat, as

are faces of polyhedra), and so on up to higher dimensions. In

algebraic topology, many flat manifolds are actually quilt-like

arrays of simpler flat manifolds glued together. For example,

we can regard the unit cell of a crystal as a three-dimensional

manifold, and since opposing sides of this parallelepiped are

identical, we could ‘identify’ them and have the unit cell be a

finite, bounded manifold with no boundary: if a bug flew out

one side, it would fly in through the opposite side. One could

even take several unit cells and glue their sides so that a bug

taking a round trip would return upside down (such a manifold

would not be represented in three-dimensional space, but

rather it would be treated as a space of its own). Some of these

manifolds are quite complex, and the machinery in these two

chapters is quite formidable.

The third of these four chapters is a brief foray into

hyperbolic space. Hyperbolic space is one of the two major

variants of Euclidean space: in Euclidean space, every trian-

gle’s angles add up to180 degrees, while in elliptic space, every

triangle has more than 180 degrees. In hyperbolic space every

triangle has less than 180 degrees. The fourth of these four

chapters is an exploration of Bieberbach groups with the

following property: if the dimension of the group is n, then its

point group is isomorphic to the group of (n � 1)-dimensional

vectors of 0’s and 1’s where addition is coordinate-wise

addition modulo 2. (For three-dimensional crystallographic

groups, the point groups isomorphic to the group of two-

dimensional vectors of 0’s and 1’s are 222, mm2 and 2/m.

According to CARAT, there are three such three-dimensional

Bieberbach groups.)

Finally, there is a chapter of open problems.

This book is advertised as a text for a graduate student in

mathematics who has already learned ‘elementary facts from

algebra, cohomology of groups and topology’. Actually, the

standard graduate core courses in these subjects are necessary,

but might not be sufficient (e.g. the text presumes considerable

familiarity with differential geometry, particularly with mani-

folds of constant curvature). I do not recommend this book

for anyone who has not had these courses or equivalents.

Excluding the appendices, open-problems section and other

ancillaries, it is 162 pages of dense material, including 89

exercises of varying difficulty – somewhat over a semester’s

worth for a special topics course. Such a course would prob-

ably focus on the first five chapters, plus additional topics as

time permits.

This is a text, not a handbook. But it is not self-contained.

Some notions are not defined, or are presented as items from

other sources; other definitions are incomplete. There are

similar problems with proofs: some are riddled with citations

presented without explanation, context or justification. The

reader is presumed to be in a library, getting up to check a

reference every fifteen minutes. This is unrealistic: a text

should be something a student can take to a park and read for

several hours.

So this is not a book that can be handed to a graduate

student to study on their own unless that student is highly

prepared. For researchers who are unfamiliar with the

immediate literature and who want to understand and confirm

the contents of the book, the leaps, typographical errors and

over-reliance on citations are disconcerting. Its value would

be greatly enhanced if it had appendices with background

material (chapter-long appendices on cohomology, topological

group theory, differential geometry etc.), complete definitions,

concrete examples, and citations in proofs converted into

sequences of lemmas. And an index of symbols.

There are few books in this area; the only other book I

know of on this topic at this level is Leonard Charlap’s

Bieberbach Groups and Flat Manifolds (Charlap, 1986),

which also begins with the Bieberbach theorems but

otherwise covers a different set of topics. And Charlap’s book

is a quarter of a century old. However, there are other

presentations of the Bieberbach results and Zassenhaus’s

approach; the most accessible I’ve found is Rolph Schwar-

zenberger’s N-Dimensional Crystallography (Schwarzen-

berger, 1980). [A short introduction accessible to someone

familiar with group theory and advanced calculus is H. Hiller’s
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Crystallography and Cohomology of Groups (Hiller, 1986).]

Szczepański’s book is a contemporary introduction to the

theory of the existence and enumeration of the crystal-

lographic groups.
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