Heavy crystals: structural crystallography of heavy-element compounds

Co-Chairs: Olga V. Yakubovich (RU), Marie Colmont (FR)

Examples of Ordered or Disordered Ternary Intermetallics Containing Rare-earth Elements and Transition Metals

E. Gaudin, J.L. Bobet, S. Tencé, S. Couillaud and B. Chevalier

CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France
E-mail: gaudin@icmcb-bordeaux.cnrs.fr

In the first part of the presentation, the structural and magnetic properties of a new series of intermetallics with the general formula \(\text{RE}_6 \text{M}_{1.67} \text{Si}_3 \) (\(\text{RE} = \text{Ce}-\text{Tb}, \text{M} = \text{Co}, \text{Ni} \)) [1-4] will be discussed. In these series \(\text{Gd}_6 \text{Ni}_{1.67} \text{Si}_3 \) and \(\text{Gd}_6 \text{Co}_{1.67} \text{Si}_3 \) exhibit very interesting magnetocaloric effect with the existence of an important magnetic entropy variation \(\Delta S_m \) around room temperature [3]. All these compounds crystallize with the \(\text{Ce}_6 \text{Ni}_{1.67} \text{Si}_3 \) structure type [2]. This structure type is closely related to the \(\text{Ho}_6 \text{Co}_{3.07} \) (or \(\text{Ho}_6 \text{Co}_{4.61} \)) structure type [5] with a perfect ordering between silicon and cobalt/nickel atoms. This hexagonal structure (S.G. P\(\overline{6} \)3/m) is characterized by infinite chains of face-shared trigonal prisms [\(\text{RE}_6 \)] filled by Si or M atoms. Theses chains are running along the c-axis and extend as triangular columns by sharing rectangular faces in the (a, b)-plane. Between these columns infinite chains of face-shared [\(\text{RE}_6 \)] octahedra are partially filled by M-atoms (Fig. 1). The strong delocalization of the electron density of M-atoms observed in these latter chains has been attributed to strong steric strains (Fig 1). This behavior was also observed in the homologous binary compound \(\text{Gd}_6 \text{Co}_{4.85} \) [6].

In the second part, the discovery of two new Mg-rich phases in ternary systems RE-M-Mg (RE = La, Gd, and M = Ni, Cu) will be presented. \(\text{LaCuMg}_8 \) [7] crystallizes in the \(\text{La}_2\text{Mg}_{17} \) structure type (S.G. P\(\overline{6} \)3/mmc) with the lattice parameters \(a = 10.1254(2) \) and \(c = 10.0751(2) \) Å. A disordered structure is observed with a random distribution of Cu atoms on some La and Mg positions. The structure of the second phase, \(\text{Gd}_{13} \text{Ni}_9 \text{Mg}_{78} \) [8], was not fully determined because of a medium crystallinity. The structure was partially deduced using TEM and an average cubic structure with lattice parameter \(a = 4.55 \) Å could be assumed. A modulation along both \(a^* \) and \(b^* \) axis with vectors of modulation \(q_1 = 0.42a^* \) and \(q_2 = 0.42b^* \) was observed. Because of the high amount of magnesium, the hydrogen absorption properties of these new phases were studied.

Figure 1: Structure of Ce\(_6 \text{Ni}_{1.67} \text{Si}_3 \). Left: Projection along the c-axis. Right: Fourier-map showing the strong delocalization of the electron density within the chains of face-shared octahedra

Figure 2: Left: Structure of LaCuMg\(_8 \). Right: Electron diffraction pattern of Gd\(_{13} \text{Ni}_9 \text{Mg}_{78} \)

Keywords: Rare-earth intermetallics, structural disorder, new phases