Poster Presentations

[MS1-P03] Developing a set of complementary methods for time-resolved structural studies. <u>Arwen R. Pearson</u>^a, Anna Polyakova^a, Briony A. Yorke^a, Diana C.F. Monteiro^a, James A. Gowdy^a, Stuart L. Warriner^a, Emanuele Paci^a, Mike E. Webb^a, Godfrey S. Beddard^b, Robin L. Owen^c,

 ^{a)} Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT,
^{b)} School of Chemistry, University of Leeds, Leeds, LS2 9JT,
^{c)} Diamond Light Source Ltd, Harwell Oxford, OX11 0DE

E-mail: a.r.pearson@leeds.ac.uk

In order to fully understand the mechanisms of biological processes, time-resolved methodologies that allow us to comprehend how function is linked to changes in molecular structure are required. Time-resolved X-ray

crystallography provides a means of directly visualising structural rearrangements associated with function. Although time-resolved crystallography is a powerful tool, due to both instrument availability and stringent sample requirements it has not been widely applied to biomacromolecules. We are taking a combined,

complementary approach to develop timeresolved structural biology on nano-second to millisecond time-scales.

As well as X-ray crystallography this includes SAXS, single crystal spectroscopy, and hydroxylradical footprinting and the synthesis of new photochemical tools for reaction initiation. We will present a summary of our recent work on enzymes and membrane transporters.

Keywords: time-resolved crystallography, biomacromolecular structures, methods development