Human IgE flips between two acutely bent structures via an ensemble of extended conformations

Nyssa Drinkwater1, Ben Cossins1, Anthony H. Keeble1, Michael Wright, James M. McDonnell, Andrew J. Beavil, Alistair J. Henry2, Brian J. Sutton1.

1 King’s College London, Randall Division of Cell and Molecular Biophysics, and MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK; 2 UCB, Slough, UK.

Email: nyssa.drinkwater@kcl.ac.uk

Immunoglobulin E (IgE) antibodies mediate allergic reactions, and their binding to FcεRI is responsible for long-term sensitisation of mast cells and basophils [1]. Disruption of this interaction is a validated strategy for therapeutic intervention in allergic diseases including asthma [2]. IgE is known to display an acutely and asymmetrically bent conformation in the Fc region through which it binds to FcεRI; this bend becomes even more acute upon receptor engagement, as shown both crystallographically and in solution [3-7].

We report the crystal structure of a complex formed between IgE-Fc and two bound Fab fragments of an inhibitory anti-IgE antibody, and show that IgE-Fc can also adopt a totally extended conformation. The IgE-Fc has adopted a completely symmetrical conformation that requires an “ unbending” of approximately 120° from the previously characterised structure. Molecular dynamics simulation reveals a series of stable conformations for free IgE-Fc that suggest a pathway from the acutely bent crystal structure through stable, extended conformations close to that seen in the Fab complex. We show by ITC, stopped-flow kinetic and FRET analyses that IgE-Fc adopts extended conformations in solution, and that these are an intrinsic property of IgE-Fc, not induced by Fab binding. We propose that IgE-Fc passes through these extended conformations as it flips between two bent conformations in which the CΣ2 domains fold back on opposite faces of the CΣ3-CΣ4 domains.

The ability of IgE to exist in both bent and extended conformations may be essential for allergen recognition by IgE-Fc when bound to FcεRI on the surface of mast cells, and as the B cell receptor respectively. Understanding the full range of conformations accessible to the free IgE molecule is also key to developing IgE-targeted therapies for allergic disease.

Keywords: X-ray crystallography of immunoglobulins; Fab complex crystallization; conformational flexibility