DXTBX: the diffraction experiment toolbox

James Parkhurst1, Aaron Brewster2, Luis Fuentee-Montero3, David Waterman3, Johan Hattne2, Nathanial Echols2, Gwyndaf Evans1, Nicholas Sauter2, Graeme Winter1

1Diamond Light Source, 2Lawrence Berkeley National Laboratory, 3STFC Rutherford Appleton Laboratory

E-mail: james.parkhurst@diamond.ac.uk

Despite a push towards the adoption of industry standards, the recording of X-ray diffraction data remains fragmented. Processing data from single crystal X-ray diffraction experiments, therefore, requires the ability to read, and interpret, image and metadata from a variety of data formats employing different experimental representations. Tools have previously been developed to address this problem. The CCP4 Diffraction Image library \cite{remacle2007} was developed to support the DNA and xia2 projects; however, it was limited by a lack of extensibility. FabIO \cite{knudsen2013} provides generic access to 2D image data but does not give consistent access to experimental models derived from image metadata.

The dxtbx provides a consistent interface to both image data and experimental models whilst supporting a completely generic, user-extensible approach to reading the data and metadata from different sources. Both single image files, such as imgCIF \cite{bernstein2005}, and multiple-image files, such as HDF5, are supported. It was originally developed for use in xia2 \cite{winter2009} to replace the Diffraction Image library; however, it has since been incorporated into the cctbx \cite{grosse-kunstleve2002}. The library is written in a mixture of C++ and Python, is open source and is distributed under a BSD license.

Access to the experimental models and image data is provided through a high-level ‘sweep’ interface instantiated by a factory function from the input data representation. A sweep represents a series of images that have a well defined geometric relationship between adjacent pixels in 3D, e.g. a series of images taken using the rotation method. The sweep provides convenient access to image data through a python list-style interface and provides methods to extract arbitrary 3D volumes from the images sequence. Simple access to experimental geometry is provided through four container classes: beam, detector, goniometer and scan. The detector model, being necessarily the most complex, also provides, for example, methods to predict intersections by diffracted beam vectors; the concept of a virtual detector plane \cite{bricogne1987} is used in order to provide abstraction from the device dependent underlying implementation. Complex effects such as parallax correction and arbitrary pixel alignments are handled transparently through a configurable pixel to millimetre mapping function. In this way, general algorithms can be developed without reference to the specifics of the experimental setup and hardware used.

1Remacle, F. and Winter, G., (2007), CCP4 newsletter on protein crystallography.

Keywords: software; experimental geometry; diffraction image data

Keywords: software; experimental geometry; diffraction image data