[MS18-P14] Similarities and Peculiarities between the Crystal Structures of the Hydrates of Sodium Sulphates and Selenates
St. Kamburov¹, H. Schmidt², W. Voigt², Chr. Balarew¹
¹Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, II bl. Acad Georgi Bonchev Str. Sofia 1113, Bulgaria
²Institute of Inorganic Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg, Germany
Email: s.kamburov@svr.igic.bas.bg

A study of the systems Na₂SO₄.10H₂O – Na₂SeO₄.10H₂O – H₂O and Na₂SO₄.7H₂O – Na₂SeO₄.7H₂O – H₂O at 15° C shows the formation of interrupted series of mixed crystals in both systems. The calculated values for Gibbs free energy of phase transitions (kJ·mol⁻¹), for transformation of one type mixed crystals into the other type mixed crystals, in the case of decahydrates are significantly smaller than those for heptahydrates [3]. This means, that the differences in the structures between the crystal structures of heptahydrates are essential in contrast to those between the decahydrates. The crystal structures of Na₂SO₄.10H₂O [4-7] and Na₂SO₄.7H₂O [8] are known. For the crystal structures of Na₂SeO₄.10H₂O and Na₂SeO₄.7H₂O there are no data at all. The existing data for the crystal structure of Na₂SO₄.10H₂O are taken at above 180 K and some disorder in the crystal structure was observed. For this reason it was of interest to study this crystal structure at low temperatures as well.

The crystal structure of Na₂SO₄.7H₂O, studied by Oswald et al [8] at 150 K, shows a slight distortion in the structure. For that reason we have studied the crystal structures of the all 4 hydrates Na₂SO₄.10H₂O, Na₂SO₄.7H₂O, Na₂SeO₄.10H₂O and Na₂SO₄.7H₂O.

A surprising result of our studies is, that the metastable hydrate of sodium selenate was found to be Na₂SeO₄.7,5H₂O, instead of Na₂SeO₄.7 H₂O as described former [2].

An interesting result of our study is, that two salts with different chemical compositions and different crystal structures (Na₂SO₄.10H₂O, tetragonal, space group P4₂/2, and Na₂SeO₄.7,5H₂O, monoclinic, space group C2/c) can act mutually as crystal nucleus, so that either of these two salts can initiate crystallization of the other from their supersaturated solutions. As a result, from the comparison between these two salts, fragments of their crystal structure with a certain similarity were determined. Thus, it could be supposed, that similarity even only between certain structural elements of both salts could acts as a nucleation agent.


Keywords: sodium sulphate, sodium selenate, crystal structure