[MS19-P02] Novel silicates with apatite crystal structure type.

Maria Wierzbicka-Wieczorek, Gerald Giester

Institute for Geosciences, Friedrich-Schiller University Jena, Carl-Zeiss Promenade 10, 07745 Jena, Germany,
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstr. 14, 1090 Wien, Austria.
E-mail: maria.wierzbicka-wieczorek@uni-jena.de

The two new silicates, Cd$_2$Er$_8$(SiO$_4$)$_6$O$_2$ and Cd$_2$Tb$_8$(SiO$_4$)$_6$O$_2$, were obtained as byproducts during a project focusing on the incorporation of heavy metals within the crystal structures of mixed-framework silicates. They crystallise in the apatite structure type and represent the first silicates housing the rare earths elements (Er/Tb) and a transition metal. Silicates with apatite structure containing lanthanides have been widely studied due to their potential use as catalysts, fast oxygen ion conductors, luminescent materials, and actinide waste forms.

The two new silicates, Cd$_2$Er$_8$(SiO$_4$)$_6$O$_2$ and Cd$_2$Tb$_8$(SiO$_4$)$_6$O$_2$, were obtained as byproducts during a project focusing on the incorporation of heavy metals within the crystal structures of mixed-framework silicates. They crystallise in the apatite structure type and represent the first silicates housing the rare earths elements (Er/Tb) and a transition metal. Silicates with apatite structure containing lanthanides have been widely studied due to their potential use as catalysts, fast oxygen ion conductors, luminescent materials, and actinide waste forms.

The title compounds are free of any such anions; because they were synthesized from melts lacking water, fluoride or chlorine: colourless Cd$_2$Er$_8$(SiO$_4$)$_6$O$_2$ and pink Cd$_2$Tb$_8$(SiO$_4$)$_6$O$_2$ crystallise in small prisms from a high-temperature flux (MoO$_3$-based flux mixtures in Pt crucibles in air; $T_{\text{max}} = 1150^\circ\text{C}$, cooling rate 2 K/h, $T_{\text{min}} = 900^\circ\text{C}$).

The crystal structures have been determined from single-crystal X-ray diffraction data (MoKα, 293 K; Bruker APEX II diffractometer).

The two isotypic compounds crystallise in the hexagonal space group P6$_3$/m (176), with $a = 9.3175(13)/9.3802(13)$, $c = 6.7030(13)/6.7983(14)$ Å, $V = 503.96(14)/518.03(15)$ Å3, $R(F) = 0.019/0.021$, respectively (Er/Tb). The crystal structures are built from an isolated SiO$_4$ tetrahedron and two further polyhedra: a seven-coordinated one (on Wyckoff position 6h) is dominantly occupied by REE and only 3-4% Cd. The nine-coordinated polyhedron on 4f shows a mixed occupancy with about 55% REE and 45% Cd.

Keywords: silicates, oxyapatite, crystal structure