Polymorphism peculiarities in Bi$_2$W$_{1-x}$Me$_x$O$_{6-y}$ and Bi$_2$Mo$_{1-x}$Me$_x$O$_{6-y}$ Systems (Me = Nb, Ta, Sb).
E.P. Kharitonovaa, V.I. Voronkovaa, A.B. Gagorb, A.P. Pietraszkob, O.A. Alekseevaa,

aM.V. Lomonosov Moscow State University,
bW. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences,
cShubnikov Institute of Crystallography, Russian Academy of Sciences.
E-mail: voronk@polly.phys.msu.ru

Bi$_2$WO$_6$ and Bi$_2$MoO$_6$ are archetypal (n= 1) members of the large family of layered perovskite-related compounds with the general formula (Bi$_2$O$_2$)(An$_{-1}$BnO$_{3n+1}$) (Aurivillius phases). These compounds attract attention as ferroelectrics, piezoelectrics, oxide-ion conductors, catalytic materials. Three phase transitions were found in pure Bi$_2$WO$_6$ and Bi$_2$MoO$_6$: ferroelectric between two polar orthorhombic phases $\gamma \rightarrow \gamma'''$ (310ºC for Bi$_2$MoO$_6$, 640-660ºC for Bi$_2$WO$_6$, ferroelectric between polar and nonpolar orthorhombic phases $\gamma''' \rightarrow \gamma''$ (604ºC for Bi$_2$MoO$_6$, 930ºC for Bi$_2$WO$_6$), reconstructive between orthorhombic and high temperature monoclinic phases $\gamma'' \rightarrow \gamma'$ (604ºC for Bi$_2$MoO$_6$, 930ºC for Bi$_2$WO$_6$). Reconstructive between orthorhombic and high temperature monoclinic phases $\gamma'' \rightarrow \gamma'$ (604ºC for Bi$_2$MoO$_6$, 930ºC for Bi$_2$WO$_6$), is fully suppressed in Bi$_2$W$_{1-x}$Nb$_x$O$_{6-y}$ solid solutions ($x = 0.1$). In the case of Ta ($x = 0.1$) and Sb ($x = 0.04$) a mixture of γ'' and γ' phases have been observed at long exposure at 940-1000oC. Ferroelectric $\gamma''' \rightarrow \gamma''$ transition does not suppressed by the dopants. For Me = Nb, Ta it strongly shifts to lower temperatures, thus the temperature region of existence of the nonpolar orthorhombic γ'' phase significantly increases from 30 to 200 degrees.

Doping Mo with Nb results in significant shift of ferroelectric $\gamma''' \rightarrow \gamma''$ and reconstructive $\gamma'' \rightarrow \gamma'$ transitions into high temperature region. According to X-ray data, Bi$_2$MoNbO$_{6-y}$ sample (50%Nb) keeps the Aurivillius-type structure, even after prolonged exposure above 800ºC. Below the melting point (1050ºC) DSC shows only one slight anomaly at 950ºC, which presumably corresponds to ferroelectric $\gamma''' \rightarrow \gamma''$ transition.

Substitution of W$^{6+}$ and Mo$^{6+}$ with Nb$^{5+}$, Ta$^{5+}$ and Sb$^{5+}$ leads to formation of oxygen vacancies. As a result the conductivity of samples with low dopant concentration (5-10 at.%) increases by 1-2 orders of magnitude in comparison with pure Bi$_2$WO$_6$ or Bi$_2$MoO$_6$. The higher concentration of Nb and Ta dopants leads to decrease in electrical conductivity.

This work is supported by RFBR (grant No. 11 02-00254-a).

Keywords: Aurivillius phases; oxygen conductors; phase transition