Structure refinement of SmVO$_4$ at pressures ranging to 10 GPa.

Wojciech Paszkowicza, Wieslaw Łasochab, Wojciech Nitekb, Pawel Piszorac, Yngve Cereniusd, Stefan Carlsond, Bohdan Bojanowskif, Hanna Dabkowskaf

aInstitute of Physics, P.A.S., Warsaw, Poland. bFaculty of Chemistry, Jagiellonian University, Krakow, Poland. cFaculty of Chemistry, A. Mickiewicz University, Poznań, Poland. dMAXlab, Lund University, Lund, Sweden. eInstitute of Physics, Szczecin University of Technology, Szczecin, Poland. fBrockhouse Institute for Materials Research, McMaster University, Hamilton, Canada.
E-mail: paszk@ifpan.edu.pl

SmVO$_4$ belongs to a family of zircon-type rare-earth orthovanadates (RVO$_4$, R = rare earth element). It exhibits catalytic properties useful in propane oxidative dehydrogenation [1] and photodegradation of organics [2]. In this work, the single-crystal diffraction is used in order to precisely determine the crystal structure, and high-pressure powder diffraction is applied for determination of the equation of state and phase transition point. The SmVO$_4$ single crystal was grown from PbO/PbF$_2$ flux by the slow cooling method. The single crystal diffraction study was performed using a Bruker-Nonius Kappa-CCD diffractometer, radiation MoK. The in-situ high-pressure measurements were conducted at 1711 beamline (MAXlab, Lund, Sweden) using a membrane-driven diamond-anvil cell, with methanol-ethanol-water mixture applied as pressure transmitting medium. The radiation of wavelength of 0.920192 Å was applied. The single crystal study yields lattice parameters of $a = 7.2687(3)$ Å and $c = 6.3887(2)$ Å, unit cell volume = 337.54(2), space group I41/amd. Powder diffraction gives $a = 7.26659(8)$ Å and $c = 6.3883(1)$ Å, both these sets compare well with the data from Ref. [4], $a = 7.2647(9)$ Å and $c = 6.384(1)$ Å. The experiments performed at hydrostatic pressures (at room temperature) show that SmVO$_4$ undergoes a zircon-scheelite phase transition which starts at 7 GPa and ends at about 9 GPa. The lattice parameters and axial ratios vary with pressure in a way similar to other members of the RVO$_4$ family. The atomic coordinates do not show a detectable variation. Fitting the Birch-Murnaghan equation of state gave the bulk modulus of the zircon type phase of 118 GPa. The above value is lower than that found in [3] for the EuVO$_4$ compound being a close neighbor of SmVO$_4$ in the RVO$_4$ series.

Acknowledgements: Partial support of the European Community in the frame of European Action towards Leading Centre for Innovative Materials (Eagle) REGPOT-2012-2013-1, EU FP7 is gratefully acknowledged.

Keywords: oxide, pressure, structure refinement