Poster Presentations

[MS24-P16] Multicomponent crystals of lidocaine.

*Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, 18100 Armilla, Granada, Spain. E-mail: duanec@ugr.es

The interest in multicomponent solid forms has increased in the last years within the pharmaceutical industry and also the solid-state community due to the possibility of obtaining materials with new properties. Crystallization strategies, supported by solvent- and solid-based techniques, have also received attention in the search and development of methodologies for the screening of multicomponent crystals. In this work, lidocaine, a common local anesthetic and antiarrhythmic drug, was selected as a model drug to develop cocrystals on the basis of the synthon types using a series of phenolic coformers. Liquid Assisted Grinding (LAG) was used as a mechanochemical synthetic tool. Attempts to produce cocrystals by LAG led to the formation of polycrystalline material. The solids obtained were then characterized by powder X-ray diffraction, FT-IR and Raman spectroscopy.

Recrystallization by slow solvent evaporation was carried out when the above-referred techniques strongly suggest the formation of a new solid form. In those cases where crystals were obtained, single crystal X-ray diffraction experiments were performed.


Keywords: lidocaine; multicomponent crystals; liquid-assisted grinding