Acta Crystallographica Section A

Foundations and Advances

Volume 70, Part 1 (January 2014)


research papers



Acta Cryst. (2014). A70, 39-48    [ doi:10.1107/S2053273313026600 ]

Experimental determination of core electron deformation in diamond

N. Bindzus, T. Straasø, N. Wahlberg, J. Becker, L. Bjerg, N. Lock, A.-C. Dippel and B. B. Iversen

Abstract: Synchrotron powder X-ray diffraction data are used to determine the core electron deformation of diamond. Core shell contraction inherently linked to covalent bond formation is observed in close correspondence with theoretical predictions. Accordingly, a precise and physically sound reconstruction of the electron density in diamond necessitates the use of an extended multipolar model, which abandons the assumption of an inert core. The present investigation is facilitated by negligible model bias in the extraction of structure factors, which is accomplished by simultaneous multipolar and Rietveld refinement accurately determining an atomic displacement parameter (ADP) of 0.00181 (1) Å2. The deconvolution of thermal motion is a critical step in experimental core electron polarization studies, and for diamond it is imperative to exploit the monatomic crystal structure by implementing Wilson plots in determination of the ADP. This empowers the electron-density analysis to precisely administer both the deconvolution of thermal motion and the employment of the extended multipolar model on an experimental basis.

Keywords: synchrotron powder X-ray diffraction; electron density; core polarization; structure-factor extraction; extended multipolar model; atomic displacement parameter.


pdfdisplay filedownload file

Portable Document Format (PDF) file
[ doi:10.1107/S2053273313026600/pc5033sup1.pdf ]
Additional plots and structure factor tables


Notes:

To open or display or play some files, you may need to set your browser up to use the appropriate software. See the full list of file types for an explanation of the different file types and their related mime types and, where available links to sites from where the appropriate software may be obtained.

The download button will force most browsers to prompt for a file name to store the data on your hard disk.

Where possible, images are represented by thumbnails.

 bibliographic record in  format

  Find reference:   Volume   Page   
  Search:     From   to      Advanced search

Copyright © International Union of Crystallography
IUCr Webmaster