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This article proposes a new theory of X-ray scattering that has particular

relevance to powder diffraction. The underlying concept of this theory is that the

scattering from a crystal or crystallite is distributed throughout space: this leads

to the effect that enhanced scatter can be observed at the ‘Bragg position’ even

if the ‘Bragg condition’ is not satisfied. The scatter from a single crystal or

crystallite, in any fixed orientation, has the fascinating property of contributing

simultaneously to many ‘Bragg positions’. It also explains why diffraction peaks

are obtained from samples with very few crystallites, which cannot be explained

with the conventional theory. The intensity ratios for an Si powder sample are

predicted with greater accuracy and the temperature factors are more realistic.

Another consequence is that this new theory predicts a reliability in the intensity

measurements which agrees much more closely with experimental observations

compared to conventional theory that is based on ‘Bragg-type’ scatter. The role

of dynamical effects (extinction etc.) is discussed and how they are suppressed

with diffuse scattering. An alternative explanation for the Lorentz factor is

presented that is more general and based on the capture volume in diffraction

space. This theory, when applied to the scattering from powders, will evaluate

the full scattering profile, including peak widths and the ‘background’. The

theory should provide an increased understanding of the reliability of powder

diffraction measurements, and may also have wider implications for the analysis

of powder diffraction data, by increasing the accuracy of intensities predicted

from structural models.

1. Introduction

The concept of Bragg’s law assumes that the scattering is

concentrated at discrete points and that away from these

positions the mutual interference gives no significant scat-

tering (Bragg, 1925). An alternative viewpoint is presented

here, where the whole of diffraction space is occupied by

scattering from many crystal planes, which when combined

contribute to the peaks observed. This effect is most obvious

in X-ray powder diffraction and this is therefore the main

focus of this article.

X-ray powder diffraction was pioneered by Debye &

Scherrer (1916) and is now a well established technique that

has been used successfully for nearly 100 years. This is a very

important technique for the identification of material phases

and their quantitative proportion, microstructure evaluation

and molecular structure determination. A powder is in general

an accumulation of small crystallites with dimensions �10 mm

or less. Most materials have some identifiable atomic peri-

odicity and therefore create an X-ray diffraction pattern. This

gives X-ray powder diffraction an important role in many

industries from building materials, pharmaceuticals, mining,

forensic analysis etc., to scientific studies on the evaluation of

the microstructure and the determination of the stereo-

chemistry of molecular structures. These analyses give infor-

mation on the strength of materials, liability to cracking in

structures, identification of polymorphs in drug design, iden-

tification of phases and their proportions in paints and cement

etc. Its impact worldwide has been enormous and many

important processes depend on X-ray powder diffraction.

However, the ‘standard explanation’ of the diffraction process

raises some concerns: for example, the low probability of

Bragg scattering (Fewster, 2000), the high variability in peak

shapes depending on experimental procedure (Fewster &

Andrew, 1999) and the poor reliability of intensity measure-

ment based on crystal statistics (Smith, 1999). Despite these

concerns, the method seems to work. It is the position, width

and intensity of the diffraction peaks that yield the informa-

tion for the analyses mentioned above.

This article will give a brief outline of the conventional

theory of X-ray powder diffraction and its shortcomings,

including the theoretical estimates of crystal statistics and

estimates of temperature factors, followed by an alternative

theory that addresses these weaknesses. Attention will be

drawn to the relevance of dynamical and kinematical scat-

tering and the origin of the intensity, the improvement in the

intensity estimates when compared with measured values and

the complex nature of the intensity distribution. The whole
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process, based on this alternative theory, is much more subtle

and fascinating than can be explained by the simple applica-

tion of Bragg’s law. This improved understanding has led to,

and may in the future lead to further, new diffractometer

designs, more robust analyses of the data and a firmer basis for

establishing the reliability of the method.

2. The conventional theory

The expression for the diffracted intensity from powders has

been presented by several authors and has the form given by

I2� / I0Mhkl Fhkl

�� ��2 1þ cos22�Bcos22�m

2

� �
1

sin 2�B sin �B

� �
:

ð1Þ

This expression can be derived based on a flat-plate detector

set normal to the incident beam after passing through a small

cluster of crystallites, e.g. Zachariasen (1945), and also is given

by James (1962) for the basic single-crystal diffraction process,

and by Brown (1955) for a cluster of crystallites as in the case

discussed. The constant of proportionality includes absorp-

tion, wavelength effects, specimen-to-detector radius, classical

electron radius etc., which are all constant in a typical X-ray

diffraction experiment. In the above equation, I0 is the inci-

dent-beam intensity, �B and �m are the Bragg angles for the

sample and the monochromator crystal, if one exists, respec-

tively, and Mhkl is the multiplicity (the number of times a

similar reflection occurs by symmetry). Fhkl is the structure

factor and is the coherent sum of the scattering fr from all the

atoms, located at fractional coordinates xi, yi, zi in the unit cell

repeat through the structure; it is given by

Fhkl ¼

Z
r
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where r = hxj + kyj + lzj, |S| = 2 sin �/�, B is the Debye–Waller

factor (Debye, 1913; Waller, 1923) and � is the wavelength.

The first bracketed term in equation (1) takes account of the

reduction in the intensity of one of the polarization compo-

nents (� polarization) in the plane of the scattering, and the

second term is a combination of the Lorentz factor and a

geometric factor. The Lorentz factor is expressed as the time

for the reflection to stay in the ‘Bragg condition’, and one of

the first texts to discuss this was by Debye (1913) and a

detailed derivation was given in Buerger (1940). Based on this

description it is not applicable to any arbitrary position in

diffraction space, but only at the ‘Bragg condition’. This term

can be expressed as 1/sin 2�B. The geometric term, 1/sin �B, is

related to the range of crystal plane tilts that will give rise to

measured scattering through a fixed detector aperture (this

can be visualized by recognizing that a large crystal plane tilt is

required to rotate the scattered beam across the detector

aperture at low scattering angles).

The intensity formula, equation (1), contains no informa-

tion about the peak widths and is considered as the intensity

associated with the ‘Bragg condition’. The peak shapes are

superimposed on this ‘stick pattern’ to smear the intensity and

form the profiles for comparison with the measured profiles.

The peak shapes are often considered as a fitted parameter

containing some mixture based on Lorentzian and Gaussian

forms, e.g. Pearson VII, pseudo-Voigt (see, for example,

Young, 1993). The peak widths are usually fitted to a quadratic

tangent function (Caglioti et al., 1958) which represents the

varying instrument function over the experimental scan angle.

The Caglioti function was derived for neutron diffractometry,

assuming Gaussian profiles, and does not include the full

instrument response. These functions do not account for the

intensities between the peaks, unless more parameters are

included that can be attributed to the sample.

The same formula, equation (1), is used for Bragg–

Brentano focusing geometry as well as the Debye–Scherrer

geometry; however, this does use an assumption that alters the

relative intensities for the two geometries, but it is a small

effect. The validity of this assumption is discussed later. The

whole expression relies on a considerable degree of averaging

and assumes that the diffraction profile comes purely from the

crystallites that are in the Bragg condition (Bragg, 1913, 1925).

3. The problem with conventional theory

The conventional theory of X-ray powder diffraction is based

on the scattering at the Bragg condition for each crystalline

plane, and assumes that there are sufficient crystallites in the

correct orientation to create the pattern observed. At first

sight this seems reasonable, since generally there could be

millions of crystallites illuminated at any one time using

standard instrumentation. This assumption will be considered

in more detail. The geometry of the instrument along with the

crystallite orientation distribution will give an estimate of the

intensities for the scattering peaks.

The conventional understanding of powder diffraction will

be considered in terms of:

(i) the likelihood of scattering at the Bragg condition,

(ii) the influence of sample movement,

(iii) the influence of dynamical and kinematical scattering,

(iv) the estimation of the temperature factors,

(v) an experiment illustrating the serious deficiency of

conventional theory.

These aspects will be considered briefly at this stage with an

emphasis on some experimental pointers and then be

considered in detail later in the article.

3.1. The likelihood of scattering in the Bragg condition

If we consider two well characterized sample types, Si and

LaB6 used in this study, it is possible to estimate the chance of

scattering in the Bragg condition with the conventional

Bragg–Brentano diffractometer (Bragg, 1921; Brentano,

1946). The geometry of the Bragg–Brentano diffractometer is

given in Fig. 1(a). With this para-focusing geometry the sample
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area illuminated can be very large. A typical instrument

source-to-sample distance is 240 mm with a beam width of

10 mm. Within the plane of the diffractometer, the X-ray

source focus dimension could be typically 40 mm, with the

divergence slit set at 0.25� and the acceptance slit at 0.25�.

Alternatively, the area illuminated could be fixed at 10 �

10 mm. An approximate calculation is performed for both

configurations.

The Si sample is composed of 10 mm perfect crystalline

spheres and most of the scattering comes from the top 30 mm.

The absorption length for Si is �63 mm, then for a perfectly

packed sample the total number of crystallites illuminated by

the incident beam would be �2 406 000 at 15� 2�, �1 212 000

at 30� 2�, falling to �618 000 at 60� 2�. For a fixed incident-

beam area the number of illuminated crystallites is 3 000 000

at all angles. For LaB6 the absorption length is �1 mm and the

crystallite dimension is 3 mm. Therefore the numbers of crys-

tallites illuminated are �8 880 000 at 15� 2�, �4 470 000 at 30�

2�, falling to �2 310 000 at 60� 2�, assuming that the pene-

tration is not greater than 3 mm. For a fixed area of 10 �

10 mm, the number of crystallites illuminated is 11 100 000. In

practice, though, these are overestimates, but give a working

value to illustrate the problem with the conventional theory.

These values also assume that there is no loss of intensity

through scattering; these are extinction effects incorporated

into dynamical theory and could reduce the absorption depth

further, and this would vary with reflecting power.

If the scattering from an individual crystallite is considered,

then the divergence it experiences is calculated from the

geometry of Fig. 1(a), for the scattering normal to the

diffractometer axis. For a 10 mm crystallite, 40 mm focus and a

radius of 240 mm the accepted divergence is 0.017� and for a

3 mm crystallite this is 0.01�. In the plane normal to Fig. 1(a),

given in Fig. 1(b), there will also be some axial divergence that

is restricted by Soller slits; for this example a typical diver-

gence control could be based on 0.04 radian Soller slits. The

axial divergence parallel to the diffractometer axis is defined

by the Soller slit (or the detector dimension) geometry in Fig.

1(b). The probability of this geometry capturing scatter that

satisfies the Bragg condition, for a specific reflection from one

crystallite, is given by the product of these orthogonal

accepted divergences by the crystallite compared to 4�. This

can be visualized as the small acceptance region on the surface

of a sphere representing the distribution of orientations

compared to that of the whole sphere surface. Therefore for

the geometry in Fig. 1 the number of crystallites, X, that are

involved in contributing to the intensity through Bragg scat-

tering for a sample with N (= 2 406 000, 1 212 000 and 618 000

at 15�, 30� and 60� 2�) 10 mm Si crystallites is approximately

X ¼
0:017 �

180

� �
0:04

4� sin �
N ¼

9:44� 10�7

sin �
N ’ 17! 4:4! 1:1

ð3aÞ

(� = 15� ! 30� ! 60�). And for 3 mm closely packed LaB6

crystallites

X ¼
0:01 �

180

� �
0:04

4� sin �
N ¼

5:55� 10�7

sin �
N ’ 37! 9:6! 2:5

ð3bÞ

(� = 15� ! 30� ! 60�). Therefore with this large number of

crystallites, on average there will be very few that satisfy the

Bragg condition for any specific reflection. The 1/sin � equates

to the 1/sin �B term in equation (1). The counting statistics

would be very poor, and going to high angular resolution

instruments this would create very unreliable data. Smith

(1999) estimated the unreliability in the data and concluded

that any accurate analysis of minor phases in a mixture would

be impossible, but was assuming thousands of millions of

crystallites were contributing. However, the intensities are

reproducible, which is difficult to reconcile with the assertion

that the scattering only comes from the ‘Bragg condition’. To

account for this apparent reliability, Alexander et al. (1948)

had to assume that the crystallites were quite imperfect and

had to diffract over considerably wider angles than their

expected perfect width, whereas de Wolf (1958) assumed that

the instrumental broadening was a significant contributor.

Any single crystallite will have many hundreds of possible

reflections. Take for example the standard reference material

LaB6, a cubic structure, which has 690 possible reflections

accessible with Cu K�1 radiation. The number of observable

diffraction peaks is 25; due to symmetry, however, it must be

assumed that a significant number of reflections contribute to

the 25 2� positions to obtain reproducible intensity ratios. This

still puts great demands on the range of crystallite orienta-

tions, despite having a small lattice parameter and therefore

few possible reflections. For more complex structures, with

lower symmetry and many thousands of reflections, the

number of crystallites required to satisfy the Bragg condition

for all the possible reflections, based on the conventional

theory, will become very large or the intensities would be very

unreliable.
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Figure 1
(a) The Bragg–Brentano geometry with a sample including crystallites of
diameter L, which experience an angular spread defined by L and the
focus dimension F. (b) is the projection normal to (a). R is the radius, S
are the Soller slits that control the axial divergence, Sr is the receiving slit,
D the detector and Sd the divergence slit.



3.2. The effect of sample movement

Introducing sample rotation within the beam certainly

improves the reliability in the intensities; however, a

stationary sample can still produce all the reflections in the

diffraction pattern and give very reproducible intensity ratios.

Sample rotation in the Bragg–Brentano geometry increases

the angular spread impinging on the sample, and the prob-

ability of satisfying the Bragg condition, by a very small

amount, mainly because only those crystallites with the

appropriate plane closely parallel to the surface will produce

Bragg diffraction.

3.3. The influence of dynamical and kinematical scattering

Depending on the material, there are significant differences

in the calculated intensities when using kinematical and

dynamical theories. For example, LaB6, hkl = 003, and Si, hkl =

004, both with crystallite dimensions of 3 mm will introduce a

peak intensity difference of �20% (the kinematical scattering

theory overestimates), which reduces with decreasing crys-

tallite dimensions. The stronger reflections of LaB6, e.g. hkl =

110, have considerable dynamical effects and the calculated

kinematical peak intensity is �60, for this 3 mm dimension,

compared with that calculated from dynamical theory. The

scattering from the Bragg condition must therefore be

included or reasons given as to why these dynamical effects

are suppressed. However, the intensities derived using equa-

tion (1) that is based on kinematical theory fit reasonably well,

and so an explanation for the suppression of dynamical effects

is required. Darwin (1922) considered various crystal imper-

fections to suppress the dynamical effects: the most likely

description was termed the mosaic crystal, sometimes termed

‘ideally imperfect’, which effectively consists of small blocks of

perfect crystal that have slightly different orientations with

respect to each other (Zachariasen, 1945). The size of blocks

has to be small enough to suppress dynamical effects. As

shown in the example above, the blocks need to be very small,

probably sub-micron, for kinematical theory to be valid.

The conventional theory does not in general include

refractive-index effects, although this has been discussed by

Wilson (1940) for powders, whereas dynamical theory includes

them naturally. However, the neglect of the refractive index

makes for a very small displacement of the peaks, �0.005� for

a flat plate, which is close to the maximum value at normal

incident angles and can be 0.0� for entry and exit through

surfaces normal to the scattering planes. It is debatable

therefore whether the refractive index should be included

to estimate the peak positions in powder diffraction. This

maximum displacement of the peaks is �10% of the intrinsic

scattering width of the profiles in a typical powder diffraction

experiment. Hart et al. (1988) have discussed the ratio of

transmission to reflection geometry based on scattering in the

symmetrical ‘Bragg condition’ and estimated that it is domi-

nated by transmission geometry. This would suggest that the

refraction effect would be small and cannot account for the

measured difference in lattice parameters between poly-

crystalline Si and bulk Si (Hubbard et al., 1975). Another

important conclusion of the work of Hart et al. is that the

refractive index is negligible at large extinction distances: the

extinction distance is smallest for intense Bragg reflections

that have the largest dynamical effects.

3.4. Estimation of the temperature factors in Si

Carefully collected experimental data sets for Si powder,

using Cu K�1 in para-focusing geometry, exhibit highly

reproducible intensity values and ratios; however, on applying

the intensity formula in equation (1), the relative intensities

appear slightly overestimated with increasing 2� angle (Fig. 2).

If the dynamical effects discussed in the previous section are

included then the agreement in the intensities is considerably

worse. This difference can be resolved by allowing the Debye–

Waller factor to increase, e.g. to B � 0.06 nm2, if the scattering

follows kinematical theory, and B � 0.08 nm2 if it follows

dynamical theory. This B factor is difficult to reconcile

with the expected value of �0.02 nm2 (Reid & Pirie, 1980).

The experimentally measured parameter on bulk Si of B

�0.046 nm2, by Aldred & Hart (1973), represents the

maximum value, because their experimental conditions were

highly biased towards the core value. Reid & Pirie (1980) have

critically reviewed the literature as well as having calculated

this value for Si by numerous approaches, and concluded that

B �0.02 nm2 is the most likely value. The structure of Si is

known and therefore there is little room for manoeuvre. The B

factor is not the complete description of thermal effects on the

intensities, because this relates to the averaging of uncorre-
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Figure 2
The integrated intensity for the measured reflections (grey central bars)
displayed as a bar graph for an Si sample (Si crystallites immersed in a
resin that occupy 50% of the volume), compared with the conventional
theory: blue right-hand bars, include dynamical effects, cyan left-hand
bars based purely on kinematical theory (large diamonds for B =
0.02 Å�2, small diamonds for B = 0.046 Å�2). The experimental data were
collected on an instrument with R = 320 mm, divergence slit = 0.125�, a
PIXcel detector with 255 strips of 0.055 mm and Soller slits of 0.04 radian
and Cu K�. The black diamond is the mean of six measurements on
different samples, the ‘x’ marks are the standard deviation points and ‘o’
symbols the range.



lated atomic vibrations and assumes the vibrations are

isotropic. The discussion on the Debye–Waller factor is given

in the Appendix.

3.5. An experiment illustrating a serious deficiency of
conventional theory

Suppose a sample with very few crystallites is studied: it is

expected that the chances of observing any scattering is very

unlikely, based on crystallites satisfying the ‘Bragg condition’.

However, as can be seen in Fig. 3(a), for <300 crystallites and

no sample movement, there is a very clear diffraction pattern

from LaB6, with all the possible reflections being observed in

the angular range of the experiment. With so few crystallites, a

single crystal plane (hkl) will have on average an angular

separation between different crystallites of �11�. This is

clearly outside the range of probability for capture. This

experiment used a pure Cu K�1 incident beam (3.5 mm

FWHM � 1000 mm) with an angular divergence of 0.01� and a

Soller slit acceptance of 2.3� (0.04 radian) (Fewster & Trout,

2013). The sample consisted of a single layer of crystallites; if

the crystallites covered the adhesive mounting tape used, with

no gaps, then the crystallite number would be �300. From

X-ray absorption measurements this is unlikely and �40%

coverage is typical, giving a crystallite number �120. A more

extreme example is given for a sample of �30 crystallites or

for a perfectly packed sample �75 crystallites (Fig. 3b). The

intrinsic scattering half-height width for a 3 mm crystallite is of

the order of 0.002�, which is small compared with the capture

volume and so has little influence on the capture likelihood.

This experiment will also give an estimate of the intensity

impinging on a single crystallite. The direct beam has a flux of

10 000 photons per second on a 10 mm circular cross section,

within a divergence of 0.017�. If it is assumed that the half-

height width of a scattering peak is 0.002�, then each crystallite

in the Bragg condition should scatter �1176 � R photons [=

10 000 � (0.002/0.017) � R], where R is the reflectivity.

Suppose the reflection being studied is the 220 from Si, then

from dynamical theory R � 96% for 10 mm assuming a

simplified model (for 3 mm crystallites R falls to 73%), giving

an expected intensity of 1130 photons for each Bragg condi-

tion satisfied. This expected intensity is �100� greater than

the total intensity gathered for this reflection from 22001

crystallites, assuming a 40% coverage.

In summary, the intensity is captured for all peaks and

contradicts the notion that there must be a statistically large

enough number of crystallites, for a sufficient number of

reflections to be in the ‘Bragg condition’. Furthermore if the

observed reflections satisfied the ‘Bragg condition’, then they

would be expected to be >100� more intense than they

actually are. Both these observations call into question the

idea that the reflections must satisfy the ‘Bragg condition’, i.e.

arise purely from the condition when crystallites are orien-

tated exactly for Bragg’s law to be obeyed.

4. An alternative explanation

If the whole diffraction process is considered as an inter-

ference problem then the contributions are not confined to the

Bragg condition. To describe the concept, the scattering is

treated kinematically initially, i.e. there is no inclusion of

dynamical effects, for example extinction (incident energy loss

through scattering) and refraction effects (the refractive index

of typical materials with X-rays is �0.9999).

The profile calculations based on dynamical and kinema-

tical theories are coincident remote from the Bragg condition,

when the refraction correction is ignored. The kinematical

profile at the Bragg condition is slightly asymmetric for strong

reflections when absorption is considered; however, when this

is ignored, the profile matches that of a sine cardinal (sinc

function). The sinc function is a very convenient way of

representing the scattering profile by just considering the path

differences of possible scattered beams; therefore sinc func-

tions are used to illustrate the basic concepts in this article,

although as will be shown later dynamical theory is included.

5. The derivation of the amplitudes

The amplitude A� at the point P(2�) (Fig. 4a) for a beam

incident at an angle � to a crystal plane is found by deriving

the phase difference for different possible paths, which can be

represented by a sinc function:

A� ¼
sin �Lx

� cos 2� ��0ð Þ � cos �0

� �	 

�Lx

� cos 2� ��0ð Þ � cos �0

� �	 
 : ð4Þ

The shape of this profile is a function of the scattering plane

lateral dimension in the plane of the incident-beam direction,
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Figure 3
The scattering pattern from �120 crystallites or if perfectly packed 300
crystallites (3.5 mm beam width � 1 mm sample size and a single layer of
crystallites) of LaB6 with crystallite sizes varying from 2 to 5 mm with the
full range of reflections up to 80� 2� (a). (b) gives the profile with �30
crystallites or if perfectly packed 75 crystallites (3.5 mm beam width �
0.25 mm sample size), where not all the reflections are clearly resolved as
in the larger sample size. The data were collected with a 0.01� divergent
Cu K�1 beam from a 1.8 kW X-ray laboratory source and a stationary
sample in 35 min.

1 The number of 5 mm radius crystallites irradiated during this experiment, by
a beam of 35 mm wide and 256� 55 mm pixels = 35� 256� 55/(�52)� 40% =
2509.



Lx. The position of the detector is set to detect scattering at an

angle 2� with respect to the incident beam. The maximum

reflecting power occurs at � = � and is the specular reflection

from a single plane of atoms at this incident angle. A� is the

amplitude recorded at P(2�) as the crystallite is rocked about

an axis normal to the incident and scatter beams (Fig. 4b).

Within a perfect crystal there will be many parallel planes

that scatter as above, and their amplitudes are added taking

into account their phase relationships. The maximum ampli-

tude occurs when the phase difference between the different

possible paths is zero or n�, where n is an integer, and when

the amplitude A� is at a maximum. The amplitude combina-

tion therefore falls in magnitude as � differs from �, equation

(4), and when � differs from the perfect constructive inter-

ference combination of waves, A2� . The latter amplitude is

analogous to scattering by a diffraction grating, which is the

product of the amplitude of a single slit and that from many

slits (e.g. Jenkins & White, 1957).

It is important to show that the scattering from a stack of

parallel planes remains in phase when � 6¼ �B at the scattering

angle 2�B. Fig. 4(a) shows the end point of summing a large

number of waves scattered across the surface of a plane;

however, the separation between the scattering points, x in

Fig. 4(c), makes no difference to the end result for A�

provided x is small. The trajectories A0, B0, C0 and D0 all

represent possible paths for a photon, and the combination

A0A1 and C0C1 and similarly B0B1 and D0D1 will always have

a value of x that will keep them in phase. The path difference

� for a given x is ab + bc in Fig. 4(d), where

� ¼ d sin �þ sin 2� ��ð Þ½ � � x cos �� cos 2� ��ð Þ½ �

where x can be determined by equating � = 2dsin � which is

the condition when x = 0, and must also be satisfied; therefore

x ¼ d
sin �þ sin 2� ��ð Þ � 2 sin �

cos �� cos 2� ��ð Þ
:

The values of x/d vary from 0 to a maximum of typically �0.1

(for a Bragg angle of 14.2� and 0 < � < 28.4�), the phase is only

maintained provided x < the crystallite dimension or the

coherence length. This path difference leads to the amplitude

for a stack of parallel planes being

A�2� ¼ A�A2�

¼
sin �Lx

� cos 2� ��0ð Þ � cos �0

� �	 

�Lx

� cos 2� ��0ð Þ � cos �0

� �	 

�

sin �d
� ð2 sin �Þ � n�
� �
�d
� ð2 sin �Þ � n�
� � sin N �d

� ð2 sin �Þ � n�
� �	 


sin �d
� ð2 sin �Þ � n�
� � :

ð5Þ

This is a combination of the separation between the planes, d,

and the number in the stack, N, and the incident angle, which

is given as �0 to refer to the case when there is no tilt, X = 0. A

plot of 2� for various �0 will result in the intensity being

concentrated at two positions, when 2� = 2� corresponding

to the specular condition expressed in A�, and at 2� =

2 sin�1(n�/2d), which is the Bragg angle 2�B (Fig. 5). If � = � =

�B the intensity comes to a maximum and represents the Bragg

condition.

Hence a powder sample that has a distribution of orienta-

tions will create fringes associated with its size and surface

shape and an enhancement at 2�B for each crystallite plane.

The magnitude of the size fringes is given by |A2�|
2 since A� =

1 for a parallelepiped, and the enhancement at 2�B results

from |A�|2 since A2� = N. Each crystallite with a specific �
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Figure 5
The variation in |A�A2�|

2, based on a parallelepiped, for different �
values (given as a fraction f of the �Bragg value), with the inset showing the
detail close to the Bragg angle. For each 2� profile, except at the Bragg
condition, there are two peaks in the intensity, at the specular condition
when 2� = 2� and when 2� = 2�Bragg. The value of the intensity at the
specular peak is given by |A2�|

2. The accumulation of a large number of
orientations will add intensity to the tails and to the 2�Bragg angle, the
latter will create enhancement at the Bragg angle, without necessarily
being in the Bragg condition.

Figure 4
(a) The different path lengths for a photon from a single crystal plane; the
path-length difference is given by the difference in the length of the solid
arrows. (b) The variation in |A�|2, along �, equation (4), with X = 0 and
the P� included [equation (16a)], for various lateral dimensions Lx. All
the peaks have been normalized and the main graph has been averaged
(except the peaks) to show the trend, and the inset indicates the actual
complexity of the fringing. (c) The extension of (a) to multiple planes and
how the combination of waves A and C will maintain a phase relationship
by allowing x to vary, (d).



value will create scatter along 2� that will contribute to the

fringing and to 2�B. The contribution to the fringing from

many crystallites will be distributed, whereas the enhance-

ments at 2�B are additive. For a full distribution of � values for

a parallelepiped the profile in 2� takes on the form of |A2�|
2 as

given in Fig. 5.

The amplitude given above assumes that the crystal plane

normal is in the same plane as the source and the detector at

P(2�). However, if this scattering plane is inclined by an angle

X, then �0 is modified to

�X ¼ cos�1
1þ cos �

cos tan�1 tan � sin Xð Þ½ �

n o2

� sin � cos Xð Þ
2

2 cos �
cos tan�1 tan � sin Xð Þ½ �

n o
0
B@

1
CA: ð6Þ

The maximum in the scattered amplitude will now be in the

plane of the source and the plane normal and therefore not in

the same plane as in Figs. 4(a), 4(c) and 4(d). The amplitude is

now modified by this new value for the incident angle and

becomes

A�X2� ¼
sin �Lx

� cos 2� ��Xð Þ � cos �X

� �	 

�Lx

� cos 2� ��Xð Þ � cos �X

� �	 

�

sin �d
� ð2 sin �Þ � n�
� �
�d
� ð2 sin �Þ � n�
� � sin N �d

� ð2 sin �Þ � n�
� �	 


sin �d
� ð2 sin �Þ � n�
� � :

ð7Þ

In the diffraction geometry considered, this amplitude refers

to that observed by a capture point within the plane

containing the source and the scattering plane surface normal.

The amplitude contribution at the detector P can be derived

from the coherent sum of the various possible beam paths on

this inclined scattering plane (Fig. 6). The lateral dimension of

the crystallite, Ly, normal to Lx and d, will result in another

sinc function that varies with the tilt, X, and is given by

AX ¼

sin
�Ly

� sin tan�1 tan � sin Xð Þ
� �	 
� �

�Ly

� sin tan�1 tan � sin Xð Þ½ �
	 
� � : ð8Þ

The product of equation (8) with A�2�, equation (7), will give

the amplitude observed at P(2�) for a scattering plane tilted by

X out of the plane containing the source, the centre of the

crystallite and the detection point, P, i.e. the plane given in

Figs. 4(a), 4(c) and 4(d). The full amplitude is given by

A�2�X

¼
sin �Lx

� cos 2� ��Xð Þ � cos �X

� �	 

�Lx

� cos 2� ��Xð Þ � cos �X

� �	 
 sin �d
� ð2 sin �Þ � n�
� �
�d
� ð2 sin �Þ � n�
� �

�
sin N �d

� ð2 sin �Þ � n�
� �	 


sin �d
� ð2 sin �Þ � n�
� � sin

�Ly

� sin tan�1 tan � sin Xð Þ
� �	 
� �

�Ly

� sin tan�1 tan � sin Xð Þ½ �
	 
� � :

ð9Þ

In summary, the amplitude is a function of the interplanar

spacing d, � is the wavelength of the X-rays and n is an integer,

the number of contributing planes, N, with dimensions Lx, Ly,

and the orientation of these planes to the incident beam, �0

and X [�X is related through equation (6)].

There will be a measurable amplitude distribution every-

where within the bounds 0 < � < 2� (or � � 2� < � < �/2 if 2�
> �/2), ��/2 < X < �/2 and 0 < � < �/2 (Fig. 7). The scatter

below the plane (� > 2�) and that backscattered (� < � � 2�)

is assumed to be weak compared with that reflected forward

above the plane, making the calculations faster without

changing the subsequent estimates for the mean intensities.

The value of n in equations (5), (7) and (9) can take on any

integer value and is considered briefly. For the case of n = 1, �
� 2�B since the influence of any diffraction cannot be

observed if the maximum is not theoretically accessible. If n >

1, harmonic components of hkl would be expected, i.e. path

lengths at multiples of the wavelength; however, the

enhancement is weaker and their magnitude is dependent on

high levels of perfection, which makes it less relevant to

powder diffraction. � can take on a maximum value of �/2,

before the scattering is directed towards �2�, and for � > �
the scattering will not be from the (hkl) plane but from

(�h� k� l). Similarly for � < 0, the scattering will only come

from the (�h� k� l) plane towards �2� and switches to the
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Figure 6
(a) gives the path difference from scattering out of the specular plane that
results from an inclined plane; the path difference is indicated by the solid
arrows in the projection given in (b). The beam paths of the maximum
intensity for the incident angle �X projected on to the diffraction plane
follow the dashed lines in (a) and (b), but the intensity of interest is at P.

Figure 7
The calculated intensities as � and X are varied for a detector at 2� = 60�

(a) and 2� = 110� (b) for 10 mm crystallites. The intensity distribution is
evaluated by randomly sampling � and X positions, 71 262 in (a) and
82 362 in (b), and integrating over �� and �X associated with the
instrument function. The bounds of the instrument function, based on
0.04 radian Soller slits and diffractometer radius of 320 mm, are given by
the crosses in the expanded region close to the ‘specular condition’, � = �.



+2� for � < ��/2. The regions incorporating �� < X < ��/2,

�/2 < X < � relate to scattering from the underside of the

planes and correspond to the reflection �h� k� l. Fig. 7 can

be considered as the intensity distribution from a single

crystallite with the detector set at 2�. Therefore, there will be

scattering captured by the detector from this single crystallite

as it is tilted in X and rotated in �.

The locus and intensity of a Debye–Scherrer ring are

represented in Fig. 7 as a line at a constant �. � represents the

maximum incident angle on the crystal plane for a specific

orientation. As the detection point is moved around the ring,

this is equivalent to rotating in X. However, this change in X

results in a new incident angle, �X, for that detection point.

The locus of stronger intensity where X 6¼ 0, for example

associated with the specular (or Bragg peak), occurs where �X

= � that can only be accessed by increasing �. What this means

is that a crystallite will contribute intensity to the Debye–

Scherrer ring over	 �/2 that peaks at X = 0 if � < � and at	X

and X = 0 if � > �. For � > � the characteristic three spots

should indicate the deviation of � from �.

The structure factor described in equation (2) should be

considered more carefully. The structure factor is better

described as the scattering power, since it represents the

integral of all the scattering from a plane with indices hkl. The

scattering power is assumed, based on pure ‘Bragg scattering’,

to exist at the Bragg angle, with some small allowance for the

peak broadening in conventional powder diffraction theory,

i.e. the structure-factor influence is smeared. It is important to

differentiate between the intensity measured and to what it is

assigned, since the scattering power [the full integral of

equation (2)] is the sum of all the possible scattering from the

hkl plane. The scattering power corre-

sponds to the sum of all the amplitude

contributions within the bounds given

above, integrated over the accessible

range of 2�. Therefore the measured

intensity does not necessarily relate

simply to a representative estimate of

the scattering power. This is discussed

further in the next section.

Clearly if this scattering can be

observed from a specific hkl reflection

that fits these bounds, then any crystal

plane orientation that fits these bounds

will also produce scattering that will

have a maximum intensity capture for

detection at its 2� = 2 sin�1(n�/2d). A

single orientation of a single crystallite

can therefore produce scattering from a

large range of hkl reflections. Hence the

full scattering pattern from a poly-

crystalline powder will emerge from

very few crystallites, although the

intensities will be very variable until

a reasonable statistical sample is

obtained. As an example, a simulation

of the scattering from a single Si 10 mm

crystallite is given in Fig. 8, where all the hkl reflections that lie

within the bounds defined above will contribute to the

detected signal. This particular example was one out of seven

randomly chosen orientations, which included on average 6.3

reflections, ranging from 3 to 12 (0 reflections have been

recorded but not in this set).

It is recognized that the crystallite has been defined by three

dimensions, Lx, Ly and Lz, which represent a parallelepiped,

and not the full shape. This is discussed in the section on

dynamical scattering effects and whatever is used will neces-

sarily be an assumption. The rotating parallelepiped given in

this description will result in enhanced intensity normal to the

surface planes evident in Fig. 5 as |A2�|
2 and in Fig. 7 as |A�|2 at

X = 0. The introduction of various shapes creates a different

distribution of fringing, but the enhancement at 2�B is still

present (Anderson & Fewster, unpublished work).

These amplitudes and these angular coordinates are now

mapped onto the diffractometer to obtain the summation

ranges in equation (9) and from that the relevant intensities

can be determined.

6. The new intensity formula

The resultant intensity captured by the detector at P(2�) is

then the integral of all the contributions that can pass from the

source to the detector via the crystallite. The first of the

following equations represents the condition when the

coherence of the X-rays exists over large areas of the source

and at the detector, equation (10). This is unlikely in a typical

powder diffraction experiment, and so the coherent sum

should be over a smaller region defined by the X-ray coher-
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Figure 8
The calculated scattering captured by a linear detector with no axial width from a single Si crystallite
fixed at one orientation, which gives an indication of how the powder diffraction pattern is created.
This pattern was one that gave the highest number of reflections, chosen from a randomly orientated
set of ten crystallites. Typically the number can be anywhere between 0 and 12; the latter is the full
complement of unique peak positions out of the 246 reflections. The reflections that were captured in
this angular range appear in the right-hand lower quadrant and represent the ranges 0 (or �� 2�) <
� < 2� (or �/2), ��/2 < X < �/2 and for 0 < 2� < � (provided 2� < 4�B).



ence length: this is typically in the region of 4 mm corre-

sponding to an angular acceptance of 0.001� within the

minimum sampled region of 0.01� � 2.3� (Fig. 7). Therefore

the practical experiment is best represented by the second

equation (11).

I�X 2�ð Þ ¼ f Fhkl

�� ��2� � Rþ��
2

���
2

Rþ�X
2

��X
2

ðpVP�Þ
0:5

A�X2� dX d�

 !2

ð10Þ

I�X 2�ð Þ ¼ f Fhkl

�� ��2� �

�
Rþ��

2

���
2

Rþ�X
2

��X
2

Rþ��2
���2

Rþ�X2
��X2

ðpVP�Þ
0:5

A���X2� d�X d��

 !2

�X

dX d�

2
4

3
5:
ð11Þ

�� represents the angular range accepted by the crystallite,

�X is the angular range of possible paths of the beams in the

axial plane (typically defined by Soller slits) and is discussed

below. �� and �X represent the region that is coherently

linked (effectively the region of probability that a photon can

occupy). The various parameters p, V and P� will be discussed

below. f ðjFhklj
2
Þ is a function related to the scattering power

(structure factor).

The parameter p is the polarization factor, which takes into

account the changes in the two orthogonal components of the

electric field of the electromagnetic wave, which occurs on

scattering. From geometry and for the general case when a

monochromator is used, p is given by

p ¼

cos2Xþ sin2Xcos22�m

� �
þ sin2Xþ cos2Xcos22�m

� �
cos22�

2

 �
:

ð12Þ

�m is the Bragg angle for the monochromator. This polariza-

tion term is associated with the scattering peak and, therefore,

the � component (first bracketed term) and � component

(second bracketed term) are projected onto the reflecting

plane for the specular peak. If there is no monochromator and

the incident beam is circularly polarized then this reduces to

the familiar form with 2�m = 0, i.e. p ¼ ð1þ cos2 2�Þ=2.

The parameter V is the volume over which the intensity is

captured in the experiment and is fixed in this case by the size

of the rectangular receiving slit or detector to which the

intensity is assigned. However, the intensity reaching this slit is

determined by the region in reciprocal space which has

bounds defined by ��, �X and �2�s, where �2�s is the

angular acceptance of the detector slit. The two bounds ��
and �2�s are by definition orthogonal to �X. The contribu-

tion from the area bounded by �� and �2�s is given in Fig.

9(a), which is bound by reciprocal-space coordinates (sxi, szi)

where

sxi ¼
1

�
cos 2�i ��ið Þ � cos �i

� �
szi ¼

1

�
sin 2�i ��ið Þ þ sin �i

� �
: ð13Þ

The area in reciprocal space can be determined numerically by

Heron’s method (Heath, 1921) and the results are plotted in

Fig. 9(b). The evaluated capture area in reciprocal space is

overlaid with the conventional 1/sin (2�) Lorentz factor and

clearly this derivation gives exactly the same results. What is

important here is that the derived capture volume is

completely general and is not reliant on a diffraction peak

moving in and out of the Bragg condition as in the conven-

tional definition of the Lorentz factor. Also it is independent
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Figure 9
(a) The instrument capture area for a spherical crystallite in the plane
normal to the crystal plane tilt, i.e. for X = 0. The integration steps, in �
and 2�, are inclined with corners of the area defined by (sxi, szi), where i =
1, 2, 3, 4. (b) gives the variation in this capture area as a function of 2�
(points; calculated from random values of �) and the Lorentz function
1/sin 2� (line). S is the diffraction vector that defines the area in reciprocal
space for an incident-beam vector of k0 and a detected-beam direction
defined by the vector kH.

Figure 10
The capture-volume variation with incident angle � and scattering angle
2�. The detector slit dimension is defined by �2�s in the diffractometer
plane, and the slit dimension, or Soller slit, normal to the diffractometer
plane, sa. As the angle 2�–� is reduced the range in X, i.e. �X, becomes
large. The Debye–Scherrer ring is given by the variation in � (dashed
line).



of the incident angle �: the � values plotted in Fig. 9(b) are

selected randomly between 0 and 2�. The parameter V is

therefore given by

V ¼
�Xð Þ ��ð Þ �2�sð Þ

sin 2�
: ð14Þ

The contribution, �X, is normal to the �/2� plane and its axis

lies in the diffractometer plane, and will now be considered.

The range of tilt of the crystal plane �X that can capture

intensity will vary depending on the angle of the tilt axis to

the data-collection point, 2� � � (Fig. 10). When the angle

(2� � �) is small, the angular acceptance region in reciprocal

space, defined by �X, will accept intensity over a wide range

of tilt X of the sample. Hence this large reciprocal volume will

contribute to a small angular range in �X. Therefore the

intensity at a specific � and X should be the sum of all the

contributions over the region of diffraction space that can be

captured. The spread in X over which this sum should include

is given by

�X ¼ sin�1 sa

2R sin 2� ��Xð Þ

 �
: ð15Þ

R is the sample-to-slit distance and sa is the effective axial slit

width, i.e. the equivalent lateral dimension that would accept

scattering from a single crystallite within the sample. If

(2� � �) < sin�1[sa/(2R)] then the captured scattering in X

includes the full bounds: ��/2 < X < �/2.

Another factor influencing the final intensity is the incident-

beam projection onto the scattering planes. Clearly, at low

incident angles, the proportion of the incident-beam flux that

an atomic plane can scatter is small and increases to a

maximum at normal incidence. The incident beam of dimen-

sion Bx will interact with a projection given as

P� ¼ ðLx sin �XÞ=Bx: ð16aÞ

This assumes that the crystallite under analysis is completely

bathed in the incident beam. As an example when �X is small

the cross section of the crystallite is small and the scattered

intensity is reduced. For a crystallite plane projection larger

than the incident beam, the total flux available for scattering is

unchanged so

P� ¼ 1: ð16bÞ

Equations (10) and (11) represent the intensity at a specific

coordinate and therefore the full intensity at 2� from a large

number of crystallites N with a random distribution of

orientations is given by

Ihkl 2�ð Þ ¼
XN

i¼1

I�X2�s
¼
XN

i¼1

f Fhkl

�� ��2� � 1

sin 2�

�

Z�i¼�þ��
2

�i¼����
2

ZXi¼Xþ0:5sin�1 sa
2R sin 2���Xð Þ

h i

Xi¼X�0:5sin�1 sa
2R sin 2���Xð Þ

h i A2
Xi�i

pP�i
dXi d�i

2
66664

3
77775:

ð17Þ

This summation will give the intensity at 2� from a specific set

of N hkl planes that have orientations with respect to the

incoming X-rays and detector slit defined by � and X. This

equation is applicable to a single crystal or crystallite (N = 1)

and gives the integrated intensity captured at the detector at

position 2�, associated with a specific set of crystal planes in an

orientation defined by � and X. If, however, the sample is

composed of a large number of randomly orientated crystal-

lites then the accumulated intensity at 2� can be considered as

the sum of this intensity ‘sheet’ in � and X with a ‘thickness’ of

2�s. The influence of the detector slit (2�s) can be approxi-

mated by a convolution if it is assumed that a large number of

crystallites contribute or the slit is narrow. If there are only a

few crystallites, then the contributions from the intensity sheet

are correspondingly less and may not give stable reliable

estimates of the intensity, since the very nature of the distri-

bution is that it is heavy tailed, i.e. similar to a log-normal

distribution with a truncation point intensity at � = �.

I(2�) is the intensity captured by the detector at 2�, so to

obtain the intensity along the whole profile, the amplitude

sheet should be calculated for each 2� step value, although as

will be discussed in the next section this can be simplified with

a good distribution of crystallite orientations. This equation

indicates that, when exposed to the incident beam, each crystal

plane of each crystallite scatters intensity over much of the

region above each crystal plane. It is the summation of all the

contributions from all the hkl reflections that results in

the final profile. Since all crystallites are able to contribute

intensity almost everywhere, they are not required to be

orientated to the Bragg condition for intensity to reach the

detector. The profile along 2� is also not confined to the region

close to the Bragg condition, so this equation will determine

the ‘background’ intensities and full peak profiles etc.

7. The scattering power of a reflection

The function f ðjFhklj
2
Þ will now be discussed. The scattering

power or structure factor Fhkl is the amplitude distributed

throughout the range of scattering in 2�, � and X, that fits

within the bounds defined earlier for the plane hkl, and the

intensity measured will be governed by kinematical or dyna-

mical theory. Clearly, the scattering is distributed in X and �,

as in Fig. 7, and throughout 2�, i.e. the bounds in � are from

0 to 2�B or (� � 2�B) to �/2 if 2�B > �/2, and for X ��/2 < X <

�/2, and for 2� 0 to 4�B or 0 to � if 2�B > �/2. Thus there is a

three-dimensional distribution of scattering, the sum of which

is the total intensity associated with the scattering power. The

dispersion of this scattering power is

D Fhkl

�� ��2� �
¼

R4�B or�ð Þ

0

R�¼2� or�=2ð Þ

�¼0 or��2�ð Þ

RX¼þ�=2

X¼��=2

AXi�i
A2�

��� ���2VP�i
dXi d�i d2�:

ð18Þ

This integral was evaluated by sampling, using the following

expression:

research papers

266 Paul F. Fewster � A new theory for X-ray diffraction Acta Cryst. (2014). A70, 257–282



D Fhkl

�� ��2� �
¼

R4�Bðor�Þ

0

A2
2� d2�

 !
1

sin 2�

�
PN
i¼1

R�i¼�þ��
2

�i¼����
2

RXi¼Xþ0:5 sin�1ð
sa
2RÞ

Xi¼X�0:5 sin�1ð
sa
2RÞ

A2
Xi�i

P�i
dXi d�i

" #( )
:

ð19Þ

However, in an experiment, the evaluation of the integrated

intensity from a set of crystallographic planes usually only

captures the intensity close to the ‘Bragg condition’, assuming

that the background contributes no additional scattering

associated with the structure information. The integrated

intensity is then usually related to |Fhkl|
2 in the kinematical

approximation. However, this assumes that the whole of Fhkl is

captured, which is not correct. The factor f is the ratio of the

integrated intensity over the measured limits, compared to the

full integral, equation (19). This is also the case for single

crystals and will be discussed later. From the last section it can

be seen that, in the powder diffraction experiment, when the

distribution of orientations is very large, the captured volume

of the scattering in � and X will include the whole distribu-

tion. However, because the instrument capture varies with

�X, equation (15), the data collection will oversample, so the

intensity is overestimated depending on � and 2�. The factor f

will therefore include two components: the limited capture

range for obtaining the integrated intensity and the over-

sampling due to the axial divergence:

f ¼
Rþ�2�B

��2�B

A2
2� d2�

 !
1

sin 2�

�
PN
i¼1

R�i¼�þ��
2

�i¼����
2

RXi¼Xþ0:5 sin�1 sa
2R sin 2���Xð Þ

h i

Xi¼X�0:5 sin�1 sa
2R sin 2���Xð Þ

h i A2
Xi�i

P�i
dXi d�i

8>>><
>>>:

9>>>=
>>>;

0
BBB@

1
CCCA

= D Fhkl

�� ��2� �h i
: ð20Þ

The �X map, Fig. 7, represents the distribution of intensity at

a specific 2� for a specific hkl reflection. The intensity every-

where on the �X map represents the residual contribution to

the specular, and therefore also Bragg, contribution. The

overall resultant observed intensity is then the phase sum at

this specific 2�. For example, at the Bragg condition, all the

contributions scatter in phase and further from this the

differing phase contributions create an interference pattern.

The integral, equation (20), also represents the distribution of

the scattering power in � and X at a specific 2�, which varies

as in Fig. 11(a) for a 10 mm crystallite. This, combined with the

contribution along 2�, will give the full dispersion of Fhkl. This

gives the intensity distribution values over three dimensions.

By modifying the number of crystallites N, in equation (17),

it is possible to estimate the variability of the intensities and

the proportion of the scattering that can be associated with the

structure factor.

8. Dynamical scattering effects

The absorption and losses through scattering are not included

in the equation for the amplitude A2�, equation (9). For most

structures, absorption should be included, and for those

materials that scatter strongly then dynamical theory must be

considered. In general, a crystallite will be completely

immersed in the beam and all path lengths for all reflections

will be similar; therefore, absorption should be similar for all

reflections and will act as an overall scale factor. Kinematical

theory presented here assumes that the crystallite is composed

of a series of scattering centres, and that doubly scattered

waves, leading to a reduction of the refracted wave, have little

effect (‘primary extinction’). Dynamical theory considers all

these interactions but is easily disrupted by defects and

distortions (e.g. Note 1). Dynamical theory is a wavefield

approach and depends on the boundary conditions as the

wave enters and exits the crystallite. Without modelling the

detailed shape of each crystallite, a few assumptions need to

be made. If the crystallite is assumed to be spherical, then the

intensity weighted mean of contributions in the reflection

mode and transmission mode can be estimated from geometry

(Hart et al., 1988). The differentiation between the two modes

is that in reflection mode only one branch of the dispersion

surface is excited, whereas in transmission mode two branches

of the dispersion surface are excited. To excite only one

branch of the dispersion surface, the surface normals, for the

entrance point of the incident wavefield and the exit point for

the reflected wavefield, have to be within (�/2 � �) of the

diffraction vector (crystal plane normal) (Fig. 12a). The area

of the hemisphere illuminated by the beams that satisfy the

reflection mode is (4�r22�)/2�, and therefore the fraction that

satisfies the reflection mode is 2�/�. This fraction was used

to proportion the reflection-mode and transmission-mode

contributions.

These dynamical effects are most pronounced at high

intensity; the forward double-diffracted beam is strong enough
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Figure 11
(a) The calculated dispersion of the scattering power in � and X as a
function of 2� (effectively the integral of Fig. 7 without oversampling
from axial divergence). (b) The calculated integrated intensity in � and
X as a function of 2� with the variable axial divergence limited by Soller
slits as in an experiment (equivalent to the integral of Fig. 7 with
oversampling).



to moderate the incident refracted beam, and the diffracted

beam removes a significant proportion of the incident

refracted beam. This also is only significant close to the Bragg

condition. Outside this region, it is coincident with kinematical

theory and therefore dynamical theory only needs to be

applied to scattering where � � �B.

The amplitude A2� based on dynamical theory in reflection

mode is

A2� ¼
�ie tan½�gðb2 � AEÞ

1=2
Lz�

ðb2 � AEÞ1=2
þ ib tan½�gðb2 � AEÞ1=2Lz�

; ð21Þ

where

A ¼ F�h�k�l

sinð2� ��Þ
�� ��

sin �

re�
2

�V
C;

E ¼ �Fhkl

re�
2

�V
C;

g ¼
��

� sinð2� ��Þ
�� �� ;

re is the electron radius, � is the X-ray wavelength and C is the

polarization factor that is 1 or cos 2�. The parameter b is given

by

b ¼ F000

re�
2

�V

sinð2���Þj j
sin � � 1

h i
2

� 2 sin �B

�� ��� sin �j j � sinð2� ��Þ
�� ��� �

sinð2� ��Þ:

These are the formulae for the two-beam plane-wave dyna-

mical theory with two tie points, e.g. Fewster (2003). This

calculation has to be performed for both polarizations and

added. If a monochromator is used then C takes on values of 1

and cos 2�mcos 2�. �B is the Bragg angle, specific to the set of

planes calculated, and �m is the Bragg angle for the mono-

chromator. If the incident wave impinges on the crystal

surface, or crystal plane below the critical angle for total

external reflection (typically � 0.2�), then the intensity scat-

tered into 2�, provided 2� > 2� critical angle, should be �

zero, although the contribution is very weak from the

projection effect, equation (16a), so neglecting this is not

serious. Any wave emerging from the exit surface, or a crystal

plane below the critical angle (i.e. for the latter 2� � � <

critical angle), may not emerge as well defined scattering,

depending on the shape of the exit surface. The latter intensity

contribution is insignificant compared to the instrumental

effects of equation (15). Therefore the intensity contributions

from within the critical angle are set to zero in the ‘sinc’

function and dynamical models, since this is the closest

approximation without modelling the crystal shape.

A more fundamental approach to the dynamical model

based on the atomic positions and scattering factors, not

requiring structure factors or Bragg angles, can yield the

amplitudes by slicing the crystallite into very thin parallel

lamellae (�0.001 nm) (Holý & Fewster, 2008). However, the

calculation time is increased substantially and the results are

essentially unchanged from those calculated here, unless the

crystallites are very small, in which case the scattering is well

represented by kinematical theory or the Debye formula

(Debye, 1915). This plane-wave dynamical theory is still an

approximation for many experiments and spherical-wave

theory would be less of an approximation; however, within all

the other assumptions regarding crystallite shape and the

possible lens nature (adding to some divergence) of the scat-

tered beam, the dynamical model used here is sufficient.

The amplitude A2� in transmission mode is based on

Zachariasen (1945) and is given by

A2�

� �2
¼ E2 expð�t	0Þ

sin avð Þ þ sinh awð Þ½ �
2

AEþ b2j j
: ð22Þ

The parameters not given above are

a ¼
�Lz

� sin �

v ¼ real AEþ b2
� �

w ¼ imag AEþ b2
� �

	0 ¼
2�

�
imag

re�
2F000

�V

� �

t ¼ 0:5
1

sin �
þ

1

sin 2� ��ð Þ

 �
Lz:

The parameter 	0 is the average (kinematical) linear

absorption coefficient, which is a valid assumption for the case

studied here. For crystals greater than the absorption depth

(65 mm for Si) the separate absorption coefficients should be

considered; these are associated with the two branches of the

dispersion surface and their two polarization states, leading to

different values. By reducing the value of F�h�k�l that

corresponds to the scattering from the underside of the

reflecting planes, which interferes with the refracted wave,

then the profile becomes indistinguishable from kinematical

theory and the sinc function, for both the reflection and
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Figure 12
(a) The simplified basis for establishing the proportion of reflected (R)
and transmitted (T) waves for a spherical crystallite. (b) The profile based
on dynamical theory in reflection mode (red, lower central peak)
compared with kinematical theory for a flat plate sample, and (c) the
profile for the transmission case.



transmission modes. The amplitudes based on dynamical

theory, for both transmission and reflection modes, have a

similar dependence, i.e. the dynamical effects reduce the low

2� and intense reflections. The dynamical effects can be seen

by calculating the profile from an 8 mm Si parallel-sided flat

plate, for each reflection, and comparing it with kinematical

theory (Fig. 12b for reflection, and Fig. 12c for transmission).

The magnitude of the dynamical effects can be reduced and

will have a dramatic effect on the calculated intensities. The

most influential variable, though, is to change the kinematical/

dynamical proportions by changing the contribution of

F�h�k�l. It can be shown that the dynamical impact, defined

by ðIkin � IdynÞ=ðIkin þ IdynÞ, is less than 6% for Si crystallite

dimensions �1 mm, giving some guidance for the influence.

This ratio gives an indication of the largest average

length scale over which defects can be separated, without

needing to invoke dynamical theory in Si, based on analysis of

just the Bragg condition. The presence of defects has an

additional effect of introducing diffuse scatter, which is

discussed later.

9. The calculation of the scattering profile

Because of the widespread use of the Bragg–Brentano

diffraction geometry, the emphasis here will be on calculations

and results from this configuration. The calculations are

lengthy and full use is made of parallel computing. In the ideal

case, the intensity distribution in X and � should be calculated

for each scattering plane hkl and at each step in 2�. In this way,

the full multiplicity can be incorporated, as in Fig. 8, and also

the trade-off between numbers of crystallites and flux can be

included, equations (23) and (24). To overcome the limitations

in computing power, a calibration curve was calculated at

various 2� values, assuming that this represented the variation

in the captured intensity with scattering angle. The captured

intensity was obtained by uniform sampling in X and �, and

superimposing the instrument capture volume ���X, and

integrating [�� is defined by the focus and crystallite size

and �X is a function of (2� � �)]. This procedure is repeated

until the intensity distributions start to converge, i.e. most

crystallite orientations have been explored and captured. This

method is applicable to randomly orientated crystallites. For

samples with texture or preferred orientation, a prior prob-

ability should be imposed (rather than uniform sampling), and

this would ideally need to be done for each set of hkl planes, so

that the multiplicity is incorporated naturally, as in Fig. 8.

Early attempts at this latter approach proved prohibitive in

time. For the calculation here, where it is assumed that no

preferred orientation exists, the multiplicity has been incor-

porated as a multiplicative factor when applying it to the

specific reflection concerned. The calculations are performed

in 64-bit Python with heavy use of vectorization with NumPy

and Parallel Python using up to 32 cores; this was far from

optimal but appropriate for testing the theory at this stage.

The results from obtaining a calibration curve are now

considered.

9.1. Intensity variations associated with the Bragg–Brentano
geometry

The above derivation assumes that the number of crystal-

lites illuminated is constant with respect to the sample as a

whole. In the para-focusing geometries, e.g. Bragg–Brentano

geometry, this is not the case, and the number of crystallites

illuminated changes with incident angle according to

NumCryst / R
sin 


sin � � 
ð Þ
þ

sin �

sin � þ �ð Þ

 �
: ð23Þ

Here, � and 
 are the divergence angles of the beam below

and above, respectively, the source to the goniometer axis,

which makes an angle � to the sample surface. The number of

contributing crystallites is increased at low � angles; however,

the distribution of X-ray flux is reduced according to

IBB �ð Þ ¼
X

n

I0 ��ð Þ ¼
sin � þ ��ð Þ

R sin � sin ��

 �

�
1

sin � þ n� 1ð Þ��½ �
þ

1

sin � þ nþ 1ð Þ��½ �

� ��1

;

ð24Þ

where �� is a small constant angular increment in the diver-

gence. This has a similar inverse form to equation (23), and

this is why the assumption that the two completely different

geometries, Bragg–Brentano and Debye–Scherrer, can use a

similar formula in conventional theory. However, there are

small differences, e.g. the flux varies across the sample, and

this is most pronounced for smaller radii and larger samples.

For a fully illuminated 10 mm sample with a 240 mm goni-

ometer radius, the intensity variation across the surface is

1.8% and 0.45% at 28� and 88� 2�, respectively. Perhaps a

more important point here, though, is that if the NumCryst/

flux ratio is roughly constant (this varies by 10�4 from 28� to

160� 2�), then this would suggest that the diffraction profile

in the Bragg–Brentano geometry would have increasing

unreliability with increasing 2� as the distribution of crystal-

lites satisfying the Bragg condition is reduced, if the conven-

tional theory were to be correct. For the calculation in the new

theory, this larger number of illuminated crystallites (and

reduced flux per crystallite) can be included.

9.2. The intensity associated with Bragg and non-Bragg

It is important now to assess the contribution to the

captured intensity from crystallites in random orientations

compared with those contributing at the Bragg condition. This

evaluation can be achieved by uniformly sampling over � and

X, then integrating over the vicinity to emulate the angular

acceptance of the crystallite to the divergence in both direc-

tions. This will also give an estimate of the proportion of the

intensity associated with the Bragg condition, compared with

that from non-Bragg, for a stationary sample: essentially, the

intensity distribution for a specific experimental configuration.

The variation in the intensity summation for each ‘sheet’ at a

representative set of 2� values is given in Fig. 11(b). These

calculations assume that the crystallites are small compared
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with the size of the incident beam, and also include the

probability, Pr, of capturing significant scattering over the

calculation range, i.e.

Pr 2�ð Þ ¼
2�

2�
; 2� �

�

2
; Pr 2�ð Þ ¼

�� 2�

2�
; 2� >

�

2
: ð25Þ

Initially, uniform sampling was carried out whilst monitoring

the convergence and variance of the mean intensity; however,

because the Bragg condition is such a rare event (i.e. the

central specular condition � = � and X = 0 in Figs. 4b and 7) a

vast number of crystallites are required to explore it and to

reduce the variability. After many millions of samples, with an

integration of the instrument capture at each position, the

solution is far from converged, and since this cannot easily be

achieved analytically, an integration method based on the idea

of importance sampling was used. The map was separated into

areas and sampled to achieve a mean; the mean was scaled to

the dimensions of the area. This allowed convergence at a far

faster rate in a practicable timescale.

The variation in the intensity captured as a function of 2� is

given in (i) of Fig. 13(a). This is a calibration curve that can be

applied to each intensity value at 2�. If the specular peak

corresponds to the appropriate 2�B coherent Bragg condition,

then the mean intensity value may not follow the kinematical

theory and so it is useful to separate the ‘Bragg’ and ‘non-

Bragg’ contributions, (ii) and (iii) in Fig. 13(a). The Bragg

condition is assumed to be satisfied whenever the Bragg peak

appears in the accepted divergence of the instrument. Hence

provided the incident beam and the scattered beam exist

above the scattering plane and they are on the opposite sides

of the plane normal, then the ‘non-

Bragg’ condition is satisfied, whereas

the ‘Bragg’ condition only exists under

exacting requirements. This is re-

expressed in Fig. 13(b), by plotting

mean values of the specular and non-

specular, multiplied by their numbers to

give the effective intensity contributions

from each. The intensity measured in

the specular (and therefore the Bragg

condition) is composed of �30% ‘non-

Bragg’ and �70% ‘Bragg’, with a stan-

dard deviation of 10% for these values

for 10 mm crystallites (Fig. 13c). The

calculation is based on sampling the

equivalent of 153 000 000 events at 2� =

10�, to a maximum of 1 374 000 000 at

90�. With more sampling this standard

deviation will reduce; however, this

does give an estimate of the proportions

of the scattering attributed to ‘Bragg’

and ‘non-Bragg’, in the limit of a very

large number of crystallites (Fig. 13c). A

typical experiment may capture none,

or very few Bragg events; however, the

mean intensity will only be displaced by

a small amount [Fig. 13a (i) compared

with (iii)]. This indicates that the impact of capturing Bragg

events will not have a large effect on the measured intensity.

Also, if the number of Bragg events changes roughly in

proportion across the 2� range, then the relative intensities

will be unchanged. These calculations were repeated for 3 mm

crystallites (Figs. 13d and 13e), and for 10 mm crystallites that

contained defects (i.e. diffuse scattering was introduced) (Fig.

13f). The introduction of diffuse scattering caused no obser-

vable difference in the ratio. For 3 mm crystallites, the ratio is

changed to 65 (15)% for the ‘specular’ contribution,

suggesting that the ‘specular’ and therefore ‘Bragg’ contri-

butions are less significant for small crystallites.

The importance sampling method used does reduce the

variability of the specular, and increase the variability of the

non-specular, compared with a totally random sampling

method. This is because the density of samples is much higher

in the former and would require a comparable number of

crystallites to give rise to the number of events quoted, and

much lower in the latter. This explains why the profiles are

not perfectly smooth [Figs. 13a (iii) and 13d (iii)]. It was

impractical to sample this equivalent number of events. In

fact, the equivalent number of events quoted is derived from

the sampling density within 0.5� of the specular position,

whereas elsewhere the sampling is sparser and scaled. The

total number of samples for each of the 17 2� values was

81 000.

The overall ‘converged’ mean intensity [Fig. 13a (iv)] [and

Fig. 13d (iv)] was obtained by fitting a fourth-order polynomial

to 13a (i) [and 13d (i)], once sufficient numbers of calculations

had been completed and the profiles had stabilized. This,
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Figure 13
(a) The mean calculated intensity as a function of 2�: (i) overall mean from all contributions, (ii)
only those contributions that capture the ‘specular’ peak, (iii) the mean intensity of those from the
‘non-specular’ and (iv) the best fit profile through the overall mean intensity. (b) are the mean
intensities � numbers for the ‘specular’ (i) and the ‘non-specular’ (ii). (c) gives the ratio of the
proportions of ‘specular’ (i) and ‘non-specular’ (ii) to the overall intensity. (d) and (e) are similar to
(a) and (c), except the calculations are based on 3 mm crystallites. ( f ) compares directly with (c),
except the calculation is for 10 mm crystallites with defects, i.e. diffuse scattering is included.



as mentioned earlier, represents the situation with a large

number of randomly orientated crystallites.

The overall intensity captured during an experiment at the

‘Bragg position’ (or ‘specular position’) is the product of the

number of contributions and mean intensity associated with

the ‘Bragg condition’ (or ‘specular condition’), plus the

product of the number of contributions and mean intensity

associated with the ‘non-Bragg condition’ (or ‘non-specular

condition’):

Ioverall ¼ 	BraggNBragg þ 	non-BraggNnon-Bragg: ð26Þ

These mean ‘Bragg’, ‘non-Bragg’ and ‘overall’ intensity

contributions are given in Fig. 13(a), where a significant

difference can be seen in the ‘Bragg’ and ‘non-Bragg’ means.

However, the product of the number of contributors of ‘Bragg’

and ‘non-Bragg’ with their respective mean intensities result

in very similar values (Fig. 13b). The result of this is that the

overall mean intensity is very similar to the mean intensities of

the ‘non-Bragg’ contributions, Figs. 13(a) (i) and 13(a) (iii),

and 13(d) (i) and 13(d) (iii).

The calculated mean intensities converged to the values

given in Fig. 13(a) (i), which could then be fitted with a fourth-

order polynomial as a function of 2�, Fig. 13(a) (iv) for 10 mm

crystallites, 13(d) (iv) for 3 mm crystallites and Fig. 11(b) for

10 mm crystallites with defects. The profiles all follow the same

shape. If we assume that this fit represents the converged

mean intensities, then the overall variability expected from the

experimental intensities would be related to the number of

contributions of ‘Bragg’ (‘specular’) and ‘non-Bragg’ (‘non-

specular’) and each will follow a Poisson distribution, i.e. � =

N1/2. The overall variance for the two contributions is there-

fore given by

�2
overall ¼

@Ioverall

@NBragg

 !2

�2
NBragg
þ

@Ioverall

@Nnon-Bragg

 !2

�2
Nnon-Bragg

: ð27Þ

Combining equations (26) and (27) will give

�2
overall ¼ 	

2
Bragg�

2
NBragg
þ 	2

non-Bragg�
2
Nnon-Bragg

: ð28Þ

The expected reliability of the intensity measurements in an

experiment can be expressed as �overall/Ioverall, by using equa-

tions (26) and (28), and is given by

�overall

Ioverall

¼
ð	2

Bragg�
2
NBragg þ 	

2
non-Bragg�

2
Nnon-BraggÞ

1=2

	BraggNBragg þ 	non-BraggNnon-Bragg

: ð29Þ

The conventional theory is based on only the first term in both

the numerator and denominator, and this will be referred to as

the ‘Bragg’ �/I.

9.3. The ratio of Bragg to non-Bragg events

The above calculation gives estimates for the mean inten-

sities associated with the ‘Bragg condition’ (or ‘specular

condition’) and the ‘non-Bragg condition’ (or ‘non-specular

condition’), for any experimental configuration. To estimate

the level of reliability, as �/I, the number of ‘Bragg’ and ‘non-

Bragg’ events is required, equation (29). Since any experiment

may have different numbers of crystallites, it is more helpful to

calculate the ratio of the number of events, which is more

universal. The ratio of ‘specular’ to ‘non-specular’ events

associated with a particular experimental configuration can be

estimated as in the following two sections: these determine the

ratio directly, whereas the above calculations include intensity

estimations as well, which is considerably slower to calculate.

Because these calculations require a large number of repeats,

the results presented here are given as a range of both

calculations, to give an indication of typical values for the

instrument configurations described later.

For the same number of calculated events across all 2�
values the number of Bragg events at 10� is approximately

twice that for 2� > 30�, whereas the intermediate value at 20� is

�70% more than for 2� > 30�. The ‘specular’ to ‘non-specular’

ratio from numerous calculations for the 2� > 30� region varies

from 1.3 � 10�7 to 1.7 � 10�7, which is in broad agreement

with equations (3a) and (3b). The increased ‘specular’

contributions captured at low 2� values is a consequence of

the larger capture volume in the axial divergence. The larger

capture volume at low 2� values also increases the number of

‘non-specular’ contributions in a similar way. The consequence

of this is that the ‘Bragg’ and ‘non-Bragg’ contributions, given

in equation (26), are fairly similar across the 2� range, as

shown in Figs. 13(c), 13(e) and 13( f), for 10 mm perfect crys-

tallites, 3 mm perfect crystallites and 10 mm crystallites with

defects, respectively.

It is reasonable to suppose that, for different size crystal-

lites, focus size and Soller slits (the main determining factors)

will not change the ratios significantly. It should be remem-

bered that data collected around a complete Debye–Scherrer

ring will be composed of intensity with a combination of

these ‘specular’ and ‘non-specular’ contributions, and each

measurement capture region will follow a very similar ratio.

Two configurations commonly used with the Bragg–

Brentano geometry will now be considered in more detail, so

that a more realistic estimate of the reliability in the measured

intensity values can be assessed.

9.4. The case of a stationary sample

For a sample illuminated with a 10 � 10 mm footprint

composed of 10 mm crystallites three deep (half the absorption

depth for Si), with a 50% volume density, the scatter will be

created from 1 500 000 crystallites when the sample is

stationary and held at a specific 2�. For a reflection at 69� 2�
and a multiplicity of 8 (004 reflection), the average number of

Bragg contributions will be 0.5 � 1 500 000 � 8 � (�1.3 �

10�7); the latter is the ratio given above, which can be

considered as the likelihood of capturing the ‘Bragg condition’

from a crystallite. This results in �0.75 Bragg events and 1.2�

107 non-Bragg events, for a stationary non-rotating sample

(the 0.5� accounts for the scattering going towards �2�). The

�/I values for the Bragg and non-Bragg are �88% and

�0.02% respectively, from equations (26) and (28). The

overall �/I is �64%. This combination of stable underlying

intensity reduces the impact of the very variable ‘Bragg’ or
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‘specular’ contributions to give a much more reasonable

overall variability.

This overall �/I of �64% is the value calculated based on

pure monochromatic radiation and a very narrow detector slit.

During an actual experiment there is a dispersion of wave-

lengths and a range of scattering angles entering the detector

slit, i.e. the limited resolution of the diffractometer helps to

reduce the variability. If the radius of the diffractometer is

240 mm, with an X-ray focus of 40 mm, a detector slit of 55 mm

for 10 mm crystallites, then from geometry, the spread in 2�
trajectories accepted is 0.041�. The calculated intrinsic scat-

tering width for the 004 reflection from Si is �0.0025�;

therefore in simplistic terms it can be considered that the

effective number of Bragg events could be magnified by 0.041/

0.0025 � 16. If the integrated intensity is measured (or the

whole shape of the profile is used in the analysis), then the

angular acceptance at the detector slit from a 10 mm crystallite

at this radius is 0.024�, which is the unique sampling range. For

a typical experimental profile width of �0.1� this will result in

0.1/0.024 � 4 unique captures over the peak. The accepted

wavelength spread (�� �1.6 � 10�3 Å for Cu K�1 radiation)

within these allowable trajectories for each sample point is

greater by a factor of 2 than the natural wavelength dispersion

of 7 � 10�4 Å (FWHM for Cu K�1), so the effect is small in

comparison, adding�20% to the width. The inclusion of these

experimental aberrations will increase the number of Bragg

events to �51, and the non-Bragg to 1.6 � 109, which in turn

reduces the �/I to �14% for the Bragg contributions.

However, when the non-Bragg contributions are included, the

overall �/	 �8.0%. This estimate assumes that the probability

of capturing a Bragg event through scanning is uncorrelated,

which may not be the case, and also does not include shot

noise etc.

9.5. The case of a rotating sample

Sample rotation could change the variability and perhaps

make the ‘Bragg’ condition more likely. In a typical experi-

ment using the Bragg–Brentano geometry, the sample is

rotated about an axis ’, normal to its surface. For a crystallite

at a distance r from the centre of rotation, the incident beam

it experiences will vary during rotation. This depends on

the angle of its scattering plane normal to the axis of rotation,

W, and the projection of the scattering plane normal onto the

normal of the rotation axis, and perpendicular to the

diffractometer � axis, U (Fig. 14a), such that a crystallite

position within the sample can be defined by

0< r<Rsample

��<U<�
0<W<�=2;

ð30Þ

where Rsample is the radius of the sample. By geometry, the

incident angle onto an individual crystallite, i, at a distance, r,

from the centre of rotation at an angle, ’, away from the plane

including the rotation axis and the diffraction plane is

�ri’ ¼ � � tan�1 r cos ’ sin �

Rþ r cos ’ cos �

� �
þ tan�1 tan Wi cos ’þ Uið Þ

� �
; ð31Þ

where R is the diffractometer radius. The tilt, X, as defined

before (Fig. 6a) can be envisaged as in Fig. 14(a) and is given

by

Xi ¼ tan�1
cos Ui þ ’�

�
2

� �
cos Ui

 �
: ð32Þ

These equations give � and X, as in equations (6), (8) and

hence (9) as ’ is rotated for a specific crystallite plane defined

by a position r, and angular descriptions given by U and W. A

further constraint on the crystallites that contribute is the

illuminated length in the diffraction plane, defined by the

divergence slits, and the mask that limits the illuminated

length normal to the diffraction plane. The calculation is

performed by taking a random distribution of crystallite

orientations in rings with a dimension of the crystallite

diameter, and making very fine steps in ’ that modify � and X

for 0 < ’ < 2�. Clearly, simulating the full pattern from many

crystallites during rotation is a very lengthy calculation, so an

estimate was obtained by noting when a crystallite is orien-

tated into the specular (and also therefore the Bragg) condi-

tion, defined as within the angular acceptance �� (= 0.017�
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Figure 14
(a) The parameters defining the geometry of a crystallite at a distance r
from the rotation axis ’, with orientation coordinates defined by U and W.
(b) The total number of ‘specular’ events (i) captured by the detector at
2� = 60� from various radii as the sample is rotated, and (ii) the number of
‘non-specular’ events that can reach the detector. The sample is assumed
to be larger than the illuminated area, which is 10 � 10 mm; the kink in
the profile occurs because the illuminated area is square and the fully
illuminated area during a full rotation is a circle.



for 10 mm crystallites) and �X, equation (15), and if not when

0 (or � � 2�) < �X < 2�B (or �/2) for the non-specular (and

also therefore the non-Bragg condition). Since the mean

specular and non-specular intensity values have already been

established for a very large number of crystallites, the number

� mean will give the total intensity of the two contributions.

The number of specular and non-specular contributions is

given in Fig. 14(b) as a function of the radius, for an illumi-

nated length of 10 mm and a mask of 10 mm. This calculation

was repeated ten times to give an idea of the variation, which

would also give an indication of the reliability in measuring

several samples with randomly orientated crystallites. In one

revolution, assuming that only the top three crystallites

contribute, which is half the absorption depth in Si, the

accumulated number of specular and therefore Bragg events

at 2� = 60� amounts to 378 (108), whereas the number of

‘non-specular’ events amounts to 2 288 677 997 (434 565). A

contributing specular event is counted each time a step in ’
registers one, and therefore a single scattering plane can

contribute to more than one specular event. In the example of

the contributors in Fig. 14(b) they range from two contribu-

tions per specular event up to 32; this indicates that they exist

over an angular range in ’ from �0.2� up to �3.2�. The ratio

of the number of ‘specular’ to ‘non-specular’ events is 1.65 �

10�7, i.e. within the spread of values mentioned previously.

This has been repeated at 30�, and again the ratio is of a

similar order, although the average angular range of the

contributions per specular event appears smaller. This ratio of

‘specular’ to ‘non-specular’ events is also the same for smaller

illumination sizes. Clearly from this analysis the incremental

rotation in ’ can introduce more crystallites into the specular

condition, and also allows some to exist over large angular

ranges; this also increases the number of non-specular

contributions and the ratio is unchanged. The ratio of the

intensity contributions is therefore unchanged from the

stationary condition, although the number of contributions

from these �1 200 000 crystallites is increased over that of the

stationary experiment, thus reducing the variability.

Undertaking a similar analysis to that above for a 10 �

10 mm footprint and rotating, the �/I for the Bragg contri-

butions is 5.1% and the overall value is 3.2%. Hence a very

large sample of randomly orientated crystallites will have

reliable results; anything greater than this would suggest

preferred orientation, provided shot noise and other effects

are accounted for. These values are changed to 0.65% for

‘Bragg’ and 0.40% overall when the aberrations from wave-

length dispersion and slits, but not multiplicity, are included. A

minor phase at the 10% level in this sample would give an

overall �/I closer to 1.2% (or 10.1% without these aberra-

tions) and for a phase proportion of 1%, would give �/I close

to 4% (or 32% without aberrations). The equivalent �/I values

if they are based purely on ‘Bragg’ contributions would be

2.0% and 6.4% (or 16.3% and 51% without aberrations),

respectively. The presence of the ‘non-Bragg’ contributions

gives a significant improvement in the reliability of the

measured intensities, and similarly for the presence of aber-

rations. As mentioned above, these aberrations may be

correlated and therefore not independent: this will reduce

their impact on the �/I values.

It should be remembered at this stage that these calcula-

tions of the intensity at the Bragg condition are all based on

a kinematical model. The suppression of the peak ‘Bragg’

intensity with respect to the tails from dynamical effects will

increase the ‘non-Bragg’ contribution and lower the varia-

bility. The above example is for the 004 reflection from Si,

which has a multiplicity of 8, and produces a greater number

of 004 ‘Bragg’ events per crystallite, compared with a structure

of lower symmetry.

9.6. Structural aspects that may modify the probability of
‘Bragg’

During the course of this study, diffuse scattering, crystallite

size dispersion and mosaicity were considered as factors that

might influence the intensity reliability, the number of Bragg

events and the intensity ratios. The diffuse scattering will

redistribute the ‘Bragg’ into the ‘non-Bragg’ contribution,

whereas size dispersion and mosaicity will introduce more

‘Bragg’ events but reduce their impact. These aspects start to

become sample dependent, which could be problematic for an

overall general explanation without experimental evidence;

however, they are considered and discussed here.

Crystallite size dispersion. The effect of crystallite size

distribution was tested by calculation of the intensities with

different size crystallites and then combining; however, the

broad conclusions are the same. As the size is reduced, the

intensity dispersed into ‘non-Bragg’ increases and the height

of the Bragg peak reduces. In an equivalent calculation as

above but for 3 mm crystallites, the ‘non-Bragg’ increases at

the expense of the ‘Bragg’ contribution. The proportion of

intensity that can be attributed to ‘Bragg’ reduces to 65%

compared with 70% for the 10 mm crystallites. These calcula-

tions were based on the equivalent of 300 000 000 events at

10� and 2 703 000 000 events at 90� 2�. The proportion of the

crystallites in the Bragg condition is independent of the

crystallite size or number; it is the reduction of the intensity in

the Bragg condition and the increased intensity in the tails that

change the proportions. This is because in general the

instrument capture is significantly larger than the intrinsic

scattering width of the crystallites; the likelihood of this being

the case is considered next.

Mosaicity. The presence of mosaicity is much more difficult

to visualize, since this would require all crystal plane orien-

tations to be dispersed in a similar manner. Yet mosaicity

requires the crystallite to be composed of smaller crystallites

with similar orientations. These can be joined by low-angle

grain boundaries, which are often crystal plane orientation

dependent, or if the angles are large, then they scatter inde-

pendently. This will either lead to some preferred orientation

or be equivalent to more small crystallites. By isolating a single

crystallite from the Si powder sample under study, the ‘rocking

angle’ (scanning in �) showed no evidence of mosaic features

in the studied sample (Fig. 15), just a sharp narrow peak

�0.002� in 2� (from an accumulation of these diffraction
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maps) and �0.02� in �; this is too small to have an effect on

the capture of the Bragg condition.

Diffuse scattering. Two forms of diffuse scattering are

considered to try to understand their influence. These are:

thermal diffuse scattering (TDS), see the Appendix, and more

realistically, scattering due to defects, such as dislocations,

point defects, clusters and surface damage. The overall

intensity with all these additions is unchanged in the kine-

matical scattering model, but is redistributed in � and X, and

in 2� if they introduce a strain. Many authors have studied the

defects in Si, including the resulting diffuse scattering, e.g. Lal

et al. (2000). Lal et al. have found that as-grown Si can have

oxygen clusters of �0.24 mm, which result in diffuse scattering

with a characteristic change in intensity fall-off in reciprocal-

space distance, s, from the reciprocal-lattice point, where this

changes from �s�2 to �s�4 (Huang, 1947; Stokes & Wilson,

1944). Annealing in oxygen above 873 K reduces the width of

the diffraction profile. The concentration of defects in as-

grown Si gives observable diffuse scattering at the 10�1I0 level,

above that expected from TDS. In reality, surface damage

could increase diffuse scattering significantly (Fewster &

Andrew, 1993b). If diffuse scattering is observed at the level

modelled here in semiconductor-grade Si, then it is likely to be

present in virtually all samples.

Typical preparation methods will almost certainly produce

significant levels of surface damage and hence diffuse scat-

tering. Knowing whether this is a true representation of the

diffuse scattering is not essential, but knowing whether it can

influence the intensity ratios is important. The analysis similar

to that above gave results very similar to those in Figs. 13(a)

and 13(b), indicating that at the 3 � 10�1I0 level of diffuse

scattering, the expected intensities are indeed unchanged in

the kinematical model, i.e. the significant part of the diffuse

scattering is generally within the same capture volume as the

Bragg peaks. The proportion of ‘specular’ to ‘non-specular’

was closer to 75%, with a standard deviation of 6%, although

as the diffuse scattering increases this will reduce this value

(Fig. 13f). The defects giving rise to the diffuse scattering can,

though, change the dynamical/kinematical ratio.

If it is considered that the minimum diffuse scattering

estimated by Lal et al. (2000) is �10% of the 111 Bragg peak

intensity, then this gives a starting value for the level of diffuse

scattering to include. The ratio of the intensities for 10 mm

spherical crystallites based on the dynamical and kinematical

theories is �0.08 (using the geometrical mean of mixed

contributions as described above: in pure reflection and

transmission this would be 0.12 and 0.04, respectively). These

evaluations are calculated by including the full capture volume

(Fig. 16a), with the addition of the influence of the detector

acceptance, �2�s. If diffuse scattering is included at 10% of

the kinematical peak level, then the ratio tends towards �0.63

(0.78 and 0.49 in reflection and transmission, respectively).

It is clear that the impact of diffuse scattering could be

significant in reducing the influence of dynamical scattering on

the intensities and may explain the near-perfect fit to the

kinematical theory. The data presented in Fig. 16 serve as a

useful guide as to how much diffuse scattering should be

included, based on the 220 reflection. The simulation of the

profile in Fig. 16(b) is obtained by first calculating the �
profile, assuming kinematical scattering for a perfect crystal-

lite, and including diffuse scattering with a magnitude defined

by a ratio of its maximum to the original peak intensity; the

total intensity is assumed to be the same. The remainder of the

kinematical proportion that is not associated with the diffuse

scattering is then subjected to dynamical scattering to give an

approximation of the scattering from the perfect and imper-

fect regions.

The profile to be compared with the experimental result

includes the instrumental aberrations (Fig. 16b): the crystal

analyser has an acceptance �0.003� and is set to the Bragg

peak, and the angular acceptance by the crystallite is given by

the crystallite–focus combination, which gives the blurring of

the profile in �, and is of the order of 0.008�. The experiment

used a double pinhole in combination with a line focus and a

three-bounce 220 Ge analyser crystal to remove wavelength

dispersion (Fewster, 2004). The level of diffuse scattering was

varied until the profiles became roughly coincident (Fig. 16b).

The experimental profile, shown as dots in Fig. 16(b), has a

slower fall-off in intensity than that predicted using a defect

size of 0.24 mm (b and c in Fig. 16b). The best fit occurred with

a defect size of �0.18 mm (d in Fig. 16b) with a diffuse peak to
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Figure 15
(a) The intensity measured in the vicinity of the 220 Bragg peak from a
crystallite by isolating it from a larger diffraction space map, measured by
Patricia Kidd. The geometry used was the Beam-Selection-Diffract-
ometer (Fewster, 2004), with a 100 mm double pinhole, Cu K� and 220 Ge
analyser crystal. The near-perfect match of the reflection choices removes
the wavelength dispersion to reveal the intrinsic width of the Bragg peak,
which is 0.002�. Along � is blurred by diffuse scattering and the pinhole
geometry. This can be compared with Fig. 7, although this extremely high
resolution diffraction space map is truncated because of the limited
acceptable axial divergence. The maximum intensity is �2 counts s�1. (b)
is the projected sum of the central region of the map.



kinematical peak fraction of �0.5. However, it is not the

purpose of this article to analyse the diffuse scattering in

detail, but to indicate the level of dynamical scattering that is

likely to be present, by introducing diffuse scattering to

account for the measured profile. The diffuse scattering is

assumed to be kinematical.

This estimate of the diffuse scattering contribution is then

applied to all reflections, with the capture volume for the

Bragg–Brentano geometry used in this study. This gives the

ratio of the dynamical/kinematical theories, from which

the scale factors can be determined to correct the intensity

contributions for dynamical effects when the Bragg peaks

are captured (Fig. 16c). From Fig. 16(c) it appears that the

level of diffuse scattering is in excess of that required to

modify the kinematical assumption by more than a few per

cent. It is also important to note that the profile of the diffuse

scattering does not change significantly as the fraction is

increased above 0.5, so this is really a lower limit to account

for the experimental results, and therefore the dynamical

effects are likely to be less than this. This methodology also

assumes that there is a clearly defined perfect and imperfect

region, which is unrealistic but does represent the maximum

impact that dynamical effects can have. It seems reasonable to

assume that as the defects become more distributed then the

perfect region size shrinks and the dynamical effects are

further diminished.

It is worth noting that dynamical effects will have a bigger

impact on conventional theory than on this new theory for

powder diffraction. The intensity is assumed to only come

from Bragg scattering in the former, whereas this new theory

reduces the proportion of intensity from Bragg scattering to

�0.75 for 10 mm Si crystallites. As discussed earlier, this is the

limiting case, and for many experiments, when there are far

fewer crystallites, the variability of intensity associated with

Bragg events will mask the dynamical effects. For the sample

composed of 2.3 � 109 possible orientations given in Fig. 14,

the number of Bragg events is 380 with a variability of �10%

which is comparable to the influence of dynamical effects, and

therefore the impact of dynamical theory will be masked.

Also, if the diffuse scattering is significant then it will redis-

tribute the scattering outside the Bragg peak capture volume,

raising the ‘non-Bragg’ contribution, which in turn reduces

the ‘Bragg’ peak intensity and therefore the proportion of

Bragg scattering. If the impact, of encountering a Bragg peak,

on the measured intensity becomes less significant, then the

data may be less variable, which is the case when smaller

crystals are used. For smaller crystals it would be reasonable

to assume that the ‘defect to perfect’ crystal ratio increases

with the ‘surface roughness to volume’ ratio. It appears that

kinematical scattering is a good approximation to the scat-

tering observed from crystals with defects, i.e. ‘real’ crystals;

however, we can draw some other conclusions that are

covered in the following section.

10. Comparisons between theory and experiments

Equation (17) represents the intensity arriving at the detection

point 2�, and each scattering plane will have contributions to

each 2� value that fit within the bounds. The full profile can

therefore be calculated at each value of 2� from 0� to 180� (or

4�B if smaller). The emphasis in this section is on Si, since the

atom positions are defined by symmetry and the temperature

factors have been measured and calculated to high precision

(see the Appendix). The comparison in intensity will be with

the Bragg–Brentano geometry, because this is the most widely

used configuration. An explanation for the intensity features

observed in a Debye–Scherrer ring will also be illustrated.

10.1. Bragg–Brentano geometry

The basic Bragg–Brentano configuration used in this study

consisted of a goniometer of radius 320 mm, an incident beam

slit of 0.125�, a projected focus size of 0.0418 mm that results

in an illuminated area of �0.7/sin � mm (giving a maximum

and minimum area of 2.8 to 0.7 � 12 mm over the range of

reflections possible for Cu K� radiation) and this ensures that

the illuminated area is still smaller than the sample at 10� 2�.

This configuration should ensure that exactly the same total

intensity is experienced at each angular range, although the

number of crystallites will vary. The detector used was a solid-

state PANalytical PIXcel, with data collected in 0.055 mm
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Figure 16
(a) The simulated scattering within the instrument capture volume for
10 mm crystallites at the exact Bragg condition within the Bragg–
Brentano geometry (Si 220 reflection) with no instrumental aberrations
or diffuse scattering. (b) The simulated profile (including instrumental
aberrations from the geometry given in the caption to Fig. 15) with
increasing levels of diffuse scattering, a, b, c, d, that correspond to the
ratios of the peak in the diffuse scatter to the kinematical maximum of 0,
0.1, 0.5 and 0.75, respectively. The barely observable double line for each
corresponds to transmission (lower line) and reflection (upper line)
dynamical contributions. (c) The residual dynamical contributions for the
Bragg–Brentano geometry described in the text; the intensities are given
for the geometric average of the reflection and transmission geometries,
with the dashed line for conventional theory (ac, bc, cc, dc) and the solid
line for the new theory (a, b, c, d), where the fractions correspond to those
in (b).



strips, producing good para-focusing conditions. Soller slits of

0.04 radian were placed in the incident and scattered beam to

limit the cross-fire. The sample was a disc composed of an

amorphous resin and Si crystallites in equal proportions. The

Si crystallites have dimensions ranging from 5 to 15 mm, with >

80% being 10 mm.

For a 30 mm penetration these dimensions equate to

�26 000 crystallites at 28.4� 2� and 6300 crystallites at 158.6�,

illuminated at any one time at each data-collection point. This

would equate to �0.25 � Mhkl/2 (�1 for hkl = 111; Mhkl/2

takes account of the distribution of scattering towards 2� and

�2�) and �0.05 � Mhkl (�0.25 for hkl = 444) Bragg events at

each of these two angles, when all the factors of wavelength

dispersion and divergence are included as discussed

previously. The non-Bragg events are similarly increased to 6

� 106. The estimated �/I, for six independent measurements

(experimental details are contained in the following para-

graph), varies from �10% to �30% (Fig. 2), and is compar-

able to the calculated �/I for the condition with no aberrations

of �22% and greater than the condition with aberrations of

�2.7%. The latter value is the estimated best result that could

be achieved, remembering that this does not include shot

noise, and assumes that the contribution from scanning is

uncorrelated: if it is correlated this latter value may increase

up to a limit of �11%. If the number of independent

measurements was increased tenfold then the �/I value would

be within the bounds of 3% to 10%, so these calculated and

measured �/I values are in broad agreement. These are only

estimates, so to support this, a series of stationary measure-

ments of the 111 reflection were taken at various ’ angles (Fig.

17). The divergence slit was set to 0.0625�, 0.04 radian Soller

slits and the data were captured on the PIXcel as a one-

dimensional strip detector, which is why the resolution is

poorer than in the scanning method. The profile can be seen to

consist of two parts, a spiky part superimposed on a well

defined hump: this can be interpreted as the Bragg spikes

superimposed on top of non-Bragg contributions. The number

of significant peaks per scan is �1, which fits with estimates

above for the 111 reflection. It is difficult to judge exactly

where the Bragg to non-Bragg boundary should be, but from

visual inspection it appears that the non-Bragg intensity is

greater than the Bragg intensity in this experiment (Fig. 17),

whereas in the limit of very large numbers of crystallites that

are perfect, the Bragg intensity is greater than the non-Bragg

intensity (Fig. 13c). It is clear though that the intensity arriving

on each strip has a stable non-Bragg intensity contribution

with a much more variable Bragg intensity contribution

superimposed.

To determine the intensity ratios between all reflections, a

series of 2�/! scans in the centre of six different samples from

10� to 162� were collected whilst spinning the sample in ’.

These gave an average value and a variance for the integrated

intensity. The count time was 8.67 s per 0.0025� step captured

in continuous collection mode (Fig. 18a). The integrated

intensity of a reflection in a typical diffraction experiment is

given by the summation over 2� close to the peak. The region

of integration will be limited by the dynamic range of the

experiment and the general shape of the 2� profile, but as

discussed earlier this will only represent a proportion of the

scattering power. Three representative measured peaks are

given as insets to Fig. 18(a), and from these it is possible to

estimate the proportion of the scattering power captured. The

integrated intensity has been taken as the sum of the contri-

butions above the ‘background’. The location for choosing the

background level for the experiment indicates the angular
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Figure 17
A series of stationary profiles, using the Bragg–Brentano geometry, of the
Si sample described in the text. The experiments were measured at 0.5�

intervals over 10� in ’. The profiles appear to exist in two distinct forms, a
general ‘background’ (smooth hump) and a spiky region superimposed,
thought to be associated with ‘non-Bragg’ and ‘Bragg’ contributions,
respectively. The spikes appear and disappear within similar angular
ranges in ’ as predicted from the calculations leading to Fig. 14(b).

Figure 18
The full profile for Si powder with Cu K� radiation with (a) and without
(b) the instrumental artifacts; (a) and (b) are plotted on square-root and
logarithmic scales, respectively. The calculated profile is given by the thick
red smooth line, and the six experimental profiles in (a) are overlaid to
give some indication of the variations between samples, which is covered
in more detail in Fig. 19. The artifacts included are all defined by the
instrument dimensions, except the background due to residual scattering
(presumably hard radiation from the slits etc.), which is fitted with a
polynomial. The spectral dispersion, e.g. Cu K
 after absorption by the Ni
filter, appears at the right level within the background noise. A few
reflections are plotted on a linear scale to illustrate the agreement.



range for estimating the equivalent integrated ‘peak’ intensity

in the calculated profile. The proportion of the scattering

power that is captured in the experiment for the various 2�
values is given in Fig. 11: it is also important to remember that

it is also dispersed in 2�. By measuring the intensity in a

systematic way, it should be possible to obtain a good estimate

of the proportion of the dispersed scattering power.

This theory creates the full profile as discussed before;

however, to bring it into line with the actual experiment, there

are some additional factors to consider, some of which have

been alluded to in estimating the �/	.

(a) Wavelength dispersion: in effect, each wavelength

constitutes a different experiment, so a convolution is a

reasonable approximation, since the whole simulation can be

repeated for each wavelength increment and the conclusions

would be unchanged apart from the 2� cut-off bound. In this

article the width �� is derived from uncertainty in the energy-

level transition in a Cu atom and amounts to �0.0007 Å, and

both K�1 and K�2 are assumed to be present. The shape

should include the whole wavelength distribution. An Ni filter

was used without a monochromator, and since there is no

simple representation of the tube spectrum and detector

response, this was measured with a perfect Si 111 orientated

wafer. The wafer was scanned from 8� to 50� in 2�, coupled to

!, and converted to a wavelength scale to create the wave-

length dispersion convolute. The measured width of the K�1

peak equated to 0.00098 Å, close to the theoretical estimate,

from a width of 0.02� 2�, which is large compared with the

monochromatic theoretical width of 0.004� based on dyna-

mical theory, and considerably less than this based on kine-

matical theory. To match the theoretical K�1 peak width of

0.0007 Å, the profile was fitted to a Cauchy-squared profile,

then modelled with the FWHM � (0.0007/0.00098). The

difference between the two calculated profiles was then added

to the measured profile to create the theoretical width, whilst

keeping all the artifacts associated with the filter, detector

response and broader spectral emission unchanged.

(b) The detector slit will obviously capture over a range of

2� values defined by �(2�)s. 2� will vary depending on the

origin of the photon emission from the focus and the crys-

tallite size (i.e. the spread in the scattering centre); these three

components result in a simple geometric relationship of

possible paths, and by taking into account the focus emission,

a further Gaussian convolute is a good approximation.

(c) The data were collected with a solid-state strip

detector (making full use of all 255 strips), meaning that the

sample orientation is only optimized to the central strip whilst

scanning. Therefore a small smearing will occur in 2�,

depending on the angular range of the detector; again this is

another simple geometrical relationship. In this case, the

convolute is rectangular in shape as it happens to be a very

small effect.

(d) Sample scattering depth: this can be calculated from the

photoelectric absorption, to estimate the intensity contribu-

tion as a function of depth, which is again a convolute and

results in a small displacement bias in the actual 2� scattering

angle, that is a function of 2�.

(e) Axial divergence effects: these result in a redistribution

of the intensity along 2� because not all scattering lies in the

plane of the diffractometer. The result is a projection effect

that is most pronounced at high and low 2� values. If this

angular displacement is �X then the measured intensity will

appear at

2�meas ¼ �þ tan�1 tan 2� ��ð Þ cos �X½ �: ð33Þ

This can be included as a convolute whose shape was first

given by van Laar & Yelon (1984), with minor corrections

given by Finger et al. (1994). These works assume that there

are a large number of crystallites, which will be relevant to the

example given here.

These geometrical influences on the peak shapes assume

that the instrument is well defined and perfect, when in reality

this may not be the case, e.g. alignment of the focus with the

sample surface and with the detector strip. Other influences on

the profile could include: a distribution of crystallite sizes,

strain variations between crystallites or strain variations

within a crystallite. However, if we compare the integrated

intensities, then all these effects that redistribute the intensity

are captured, and a true comparison can be made between

theory and experiment.

The calculation of the full profile over the angular range is

given in Fig. 18(b) for the case with no instrumental aberra-

tions, whereas the experimental profile is overlaid with the

calculated profile (including aberrations) in Fig. 18(a). The

calculation does not involve fitting, apart from scaling, and

introducing a background that is largely dominated by the

scatter from the slits etc.; the hard radiation component is

likely to cause fluorescence. The insets indicate the peak

comparisons, assuming every crystallite is unstrained and all

are the same size; the small differences can be simply analysed

(but not presented here) by adding some strains and size

distribution that could explain the residual broadening effects.

Since each crystallite orientation will contribute to every �X

map at every 2�, provided that the X-ray beam impinges and

scatters above the plane and on opposite sides of the plane

normal, the number of sampled regions within the �X map is

very large even for only a few crystallites. The ‘background’

observed in 2� is the sum of all the contributions from all the

reflections (Fig. 18b).

The comparison of the integrated intensities is given in Fig.

19(a) and as normalized intensities in Fig. 19(b). The angular

range for obtaining the integrated intensity was the same for

the experimental and calculated profiles, with the range

defined when the experimental profile is indistinguishable

from the background. The agreement of the calculated to

measured intensities is very close, and a significant improve-

ment compared to the conventional theory (Fig. 2). The plots

include both kinematical and dynamical models and the most

likely B factor 0.02 nm2 and the maximum possible B factor

0.046 nm2 for Si. The conventional theory always shows a

systematic trend away from the experimental intensities for

any combination, with the closest fit when B = 0.046 nm2 and

kinematical theory. A B factor of 0.06 nm2 and kinematical

theory is required to bring the trend line into agreement,
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which is unrealistic. The new theory gives good agreement

with the most likely B factor of 0.02 nm2 and with dynamical

effects; also the measured intensities are easily accommodated

within the bounds defined by kinematical and dynamical

theories and the acceptable range of B factors.

10.2. Pinhole and area detector

For completeness, another simulation has been performed

for an instrument consisting of a pinhole (small crystallite

numbers) and a two-dimensional detector. The summation

should be conducted over each pixel, and in this case, it

is the Debye–Scherrer ring that is observed (Fig. 10), which

lies along �. The intensity contribution at an angle � for a

given crystallite is derived from a lattice plane tilt of X, given

by

X ¼ cos�1
�
f cos 2� ��ð Þ tan �þ sin 2� ��ð Þ½ � cos�

� cos 2� ��ð Þ tan �g=½sin 2� ��ð Þ�
�

ð34Þ

and the incident angle, �, and through equation (9). The

estimate of the intensity from any of these data-collection

procedures is therefore a summation of the three-dimensional

distribution of amplitudes, extending in X, or �, � and 2�. The

bounds in � are unrestricted, i.e. 0 to 2�, whereas 2� ranges

from 0 to �. Each crystallite plane will contribute intensity to

half of the ring, much of which is weak, although spots will

appear when the Debye–Scherrer ring intersects a significant

tail (Fig. 7). The total intensity from a powder sample is

calculated by summing all the contributions from all the

crystallites at each position on the ring.

The geometry discussed here is the simplest experimental

conceptual configuration, with a narrow pencil beam with a

divergence of typically 0.1� impinging on a cluster of crystal-

lites. The forward scattering is then captured with an area

detector, and of particular interest here is to examine the

intensity distribution in the Debye–Scherrer ring. Experi-

mentally this distribution is quite uneven (Fewster & Andrew,

1993a, 1999) and given in a more recent experiment (Fig. 20a).

The conventional interpretation is that the weaker intensity is

associated with small crystallites and the more intense spots

with larger crystallites that scatter more strongly (see, for

example, Brindley, 1945; Gonzalez, 1987). The simulation in

Fig. 20(b) is constructed from 10 000 randomly orientated

10 mm spherical Si crystallites. The distribution is clearly

uneven and mimics that observed in the experiment in Fig.

20(a). It also resembles the variability observed in Fig. 17, i.e. a

largely invariant hump of intensity with high points super-

imposed. Clearly this new theory accounts for all the experi-

mental data, in terms of intensity magnitude and distribution

and the profile shape, without recourse to a distribution of

sizes, mosaicity, additional aberrations associated with the

instrument etc.
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Figure 20
(a) The distribution of intensity around the Debye–Scherrer ring (Si
220 Cu K�1) obtained with a double pinhole (divergence �0.1�) and a
two-dimensional detector (PIXcel) by scanning in ! and 2� coupled
together, versus !. (b) The calculated intensity distribution from 10 000
randomly orientated crystallites captured in 2� and offsetting in �. Both
geometries are alternative ways of investigating the Debye–Scherrer ring,
the former was to achieve controllable high-resolution data. Both images
are plotted on a linear scale and follow similar distributions.

Figure 19
(a) The integrated intensity for the measured reflections (grey central
bars) displayed as a bar graph for an Si sample (Si crystallites immersed in
a resin that occupy 50% of the volume), compared with the new theory
(magenta right-hand bars, including dynamical effects, large diamonds for
B = 0.02 Å�2, small diamonds for B = 0.046 Å�2). The red left-hand bars
give the intensities based purely on the kinematical model. The
experimental data were captured as described in the caption to Fig. 2.
(b) includes the data illustrated in Fig. 2 and Fig. 19(a), but normalized to
the mean intensity to illustrate the systematic trends in the intensities
from the new and conventional models. The same nomenclature and
colours are used as in Figs. 2 and 19(a).



11. The relationship between the new and conventional
theories

The most significant difference between the new theory and

conventional theory is that the scattering in the former exists

almost everywhere, whereas in the latter, the only scattered

intensity is in the immediate vicinity of the Bragg condition

(Bragg, 1925). This explanation is applicable to scattering

from single crystals as well as powder diffraction, but the

consequences will have a different emphasis in both types of

analyses, so it is appropriate to categorize the effects.

11.1. Intensities in powder diffraction

The profiles in conventional theory are typically

constructed as a stick pattern with a magnitude defined by the

intensity given in equation (1), convoluted with a pseudo-

Voigt, Pearson VII or similar function whose width is given by

Caglioti et al. (1958) (see, for example, Young, 1993). These

parameters are adjusted to match the measured data, using the

method of Rietveld (1967, 1969), where the full profile can be

simulated. This does assume that the parameters are well

defined and the correlations are accounted for in the resulting

values.

In this new theory the profile is given by equation (11) by

calculating the intensity associated with the capture volume at

the appropriate 2� values through the whole profile. Although

the calculation, at this stage of ‘computer code maturity’, is a

slow process in comparison to the conventional approach, it

does give an indication of the reliability of the measured data

depending on the number of crystallites, the impact of dyna-

mical theory etc. Thus the whole scattering pattern can be

calculated including the peak shapes and the ‘background’,

based on the crystallite dimensions. If the whole geometry of

the instrument is included, for example slits in the incident and

scattered beam and wavelength dispersion, then the whole

profile can be modelled without adjustable parameters apart

from the residual scattering from the slits (probably from the

harder X-rays). This assumes that the content of the sample is

known: in this study the amorphous resin binder has been

ignored.

This new theory explains why a scattering pattern can be

observed with very few crystallites (even just one crystallite

can give the full array of peaks; Fig. 8), by simultaneous scatter

from several crystal planes, almost irrespective of their

orientations. The individual intensity contributions may be

very weak, and some of this scatter will be inaccessible

because of the diffractometer geometry. However, the large

number of these contributions produces a significant intensity

comparable to that of Bragg scattering, and is the reason for

the remarkably stable intensities from a limited number of

crystallites in the sample.

Some of the experimental data, such as spottiness on

Debye–Scherrer rings, can also be simply explained as crys-

tallites orientated close to the Bragg condition. The general

hazy background corresponds to the expected scattering based

on this theory, whereas in the conventional theory the expla-

nation assumes large crystallites in a mass of small crystallites.

The conventional theory introduces the Lorentz factor and

a geometrical factor, equation (1). In the new theory, the

former is simply related to the capture volume in diffraction

space, equation (15), rather than the time for a peak to pass

through the Bragg condition. This capture volume is therefore

much more general and applicable everywhere. The geome-

trical factor 1= sin � is less obvious in the new theory, since the

oversampling falls off faster than this factor. The ratio of the

oversampling to the intensity dispersion in �X follows this

factor approximately, but deviates at angles 2� < 45�. This

suggests that the conventional theory may underestimate the

calculated intensities in this range, which is observed in Fig. 2.

For 2� < 12� the conventional theory will overestimate the

intensities that progressively diverge towards 2� = 0 (Fig. 21).

In the new theory there is a natural cut-off in intensity at twice

the critical angle, but prior to that, the range in X has been

captured, the full accessible axial divergence has been

captured, and the intensity remains constant, which is a

function of the axial divergence accepted by the Soller slits or

detector.

The intensity is heavily dispersed outside the Bragg condi-

tion in both �X and in 2� and, therefore, so is the scattering

power. The conventional theory does not take this into

account, but associates the scattering power only within the

immediate vicinity of the Bragg condition, leading to an

overestimate of the scattering power captured, which varies as

a function of 2�. This leads to overestimated temperature

factors when fitted to experimental data. Both theories

depend on the impact of dynamical effects, which is larger for

the conventional theory, and it seems likely that defects play a

role in reducing this impact through disruption of the X-ray

wavefields and the creation of diffuse scatter.

The equations associated with the new theory allow the

intensity from a single crystal, or a collection of crystallites, to

be calculated for any position in diffraction space, given the

orientation angles �X for the crystal planes.
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Figure 21
The normalized trend lines for the integral of the dispersed intensities,
taking into account the oversampling (red), the integral without
oversampling (blue) as in Fig. 11, and their ratio (green). These are
compared with the 1/sin � (black) geometrical factor used in the
conventional theory.



11.2. Intensities from single crystals

The aspects concerning the Lorentz factor are similar to

those described above, i.e. an oversampling in reciprocal

space, rather than the time for the Bragg peak to pass through

the diffraction condition. The Lorentz-factor equation is

unchanged, but this new description shows that it is valid

throughout diffraction space, which is relevant to interpreting

the diffuse scattering etc.

In the determination of molecular structures, it is assumed

that the crystals under investigation are ‘ideally imperfect’;

that is they are composed of sufficiently small mosaic blocks

that dynamical theory does not need to be invoked. This also

leads to the rather arbitrary choice of whether to remove

reflections or reduce their effect with ‘extinction corrections’ if

the model structure does not match the intensity. Typical

crystals are large, �500 mm, and dynamical theory would be

expected to be very relevant for determining the intensities of

intense reflections, since significant dynamical effects can

occur at the micron level. However, it can be seen that crystal

defects can rapidly diminish dynamical effects; this could be

checked quite easily by performing a high-resolution scan to

check the validity of using kinematical theory (Fig. 16b). This

could lead to better estimates of the intensities. The compli-

cation associated with dynamical effects is that the transform

from intensity to scattering power is less transparent, although

this prior knowledge could assist in structure determination.

In the single-crystal experiment, the intensity is only

captured in the vicinity of the Bragg condition. For an inte-

gration volume within 0.01� in � and 0.1� in X of the Bragg

condition, the intensity from a single 500 mm crystal,

compared to the total scattering, is �95% assuming kinema-

tical scattering. So, for a larger integration volume defined by

�� � 0.344�, �X � 0.344/sin �, �2�s > 0.38� that is probably

more typical (based on an X-ray point focus of 0.4 mm, with

0.5 mm diameter crystal at 150 mm away and a 0.17 mm pixel

size detector at 100 mm from the crystal and the intensity is

captured within one pixel), the error in associating the

measured intensity with the scattering power is not significant.

It may be more appropriate to consider an ‘ideally imperfect’

single crystal used for molecular structure determination to

consist of defects giving rise to localized diffuse scattering.

Although the crystals are larger than those used in

powder studies, these tails are weaker with respect to the

Bragg peak and therefore more difficult to observe. However,

from equation (9) the absolute magnitude is comparable since

the tail amplitudes are increased according to the number of

contributing scattering planes, N, if dynamical scattering

effects are ignored. Thus weak ‘powder’ rings may be

observed.

12. Conclusions

This new theory suggests that the observed diffraction peaks

from a crystal or crystallite are not composed entirely of those

satisfying the ‘Bragg condition’. This has particular relevance

to polycrystalline samples, where each crystallite can contri-

bute to many diffraction peaks simultaneously, resulting in the

whole diffraction profile building from a limited number of

crystallites. This explains the good reliability for the measured

intensities, despite the low probability of capturing the Bragg

condition. One of the examples given here for perfect 10 mm

crystallites of Si (which probably represents highly perfect

material compared with typical polycrystalline aggregates)

shows that the intensity contribution from crystallites in the

Bragg condition may only represent �70% of the total scat-

tering, and for smaller crystallites this proportion falls. If

additional contributions, such as surface damage from

preparation, were included, then the influence of the Bragg

scattering would be weaker still, and also reduce the impact of

dynamical effects. The consequence of this description is that

the intensities differ from the conventional model in subtle

ways, which improves the agreement between the calculated

and measured values. These differences indicate that the

temperature factors may be overestimated, and the low 2�
angle reflections could be overestimated below 12� and

underestimated between 12� and 40� in the conventional

theory.

The conventional theory in general assumes the crystals or

crystallites are ‘ideally imperfect’, which is used to justify the

ignoring of dynamical effects. The analysis of the scattering

from a single crystallite indicates that there is measurable

diffuse scattering, and it is this that explains the suppression of

the dynamical effects. The proportion of diffuse scattering

required to suppress dynamical effects is less in the new theory

compared with the conventional theory for powder diffraction

experiments. The extent of the diffuse scattering can be

measured, thus indicating the strength of dynamical effects,

and could well be useful for the determination of structures

from single crystals.

Because the scattering is more ubiquitous than in the Bragg

concept, the scattering power (structure factor) from any

given reflection is also distributed, and most experiments will

not capture all the associated intensity for comparison with

calculated models. This becomes more evident with very small

crystals. The distributed scattering also accounts for the

general hazy band of scattering around a Debye–Scherrer

ring, which is often punctuated with tail intersections or near-

Bragg events of higher intensity. This new theory can also be

used to determine the scattering at any position in diffraction

space, whatever the orientation of a crystal.

This description of X-ray scattering has wider implications

than just for powder diffraction. Take, for example, some of

the latest work on X-ray free-electron lasers, where micro-

crystallites are streamed to intersect the pulsed beam to

produce scattering patterns. Conventional thinking suggests

that the number of crystallites required to build up a pattern

would be considerable, and subject to questions of reliability,

whereas this new theory indicates that the reliability may be

quite high without the need for vast numbers of crystallites.

The most obvious conclusion relates to the understanding

of ‘crystal statistics’ in powder diffraction. The almost total

dominance of the Bragg–Brentano geometry has resulted in

the assumption that only large numbers of crystallites will give
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reliable intensities, which is only true if the scattering relied

entirely on Bragg scattering events. There are also implica-

tions for the interpretation of orientation texture, since

contributions from numerous reflections may be observed,

despite not being in the Bragg condition. It suggests that the

degree of texture could well be underestimated or biased

because of the distribution of scattering in � and X. Based on

this new theory, it has been possible to build and operate a

small, high-resolution powder diffractometer, using a highly

parallel beam of pure Cu K�1 and very small sample sizes and

achieve reliable intensities (Fewster & Trout, 2013). It is

hoped that this theory will help free-up the development of

ideas in this area of research.

APPENDIX A
X-rays are scattered from the electron cloud, where there

are levels of vibration that vary from the core to the shell. In

strongly bonded Si the shell will be damped compared with the

vibrations of the core, because it is linked via the bonding to

other atoms (Reid & Pirie, 1980). The core Debye–Waller

factor has been calculated and measured accurately, see for

example the compilation and arguments in Reid & Pirie, and

the measurements of Aldred & Hart (1973), who give a value

close to the calculations at room temperature of B =

0.04613 nm2 using high-order reflections; this value is there-

fore more closely related to the core. This puts an upper limit

on the value of B under these conditions. The calculated B

associated with the shell is �0.021 nm2, slightly less than 0.5�

for the core that is considered a good estimate. Reid & Pirie

have considered the influence of directional bonding, making

the B value a combination of an isotropic component

�0.02455 nm2, and an anisotropic component arising from the

distortions due to bonding. This anisotropic component is

��0.00631 nm2 factored with a reflection-dependent variable

that is always less than unity. This again suggests that an

approximated B value should be �0.02, and certainly not

more than �0.046 nm2. The Debye–Waller factor has an

exponential fall with increasing scattering angle, and since the

measured and calculated intensities are scaled relative to each

other up to the 444 reflection (the highest available for Si with

the wavelength used in this study), a suitable value for B is

required that captures the intensity fall-off over the whole

experimental range. The shell model value of 0.02067 nm2 was

used as a start, since this is also close to the dynamic defor-

mation model of Reid & Pirie, although the agreement is little

changed on using values up to 0.023 nm2, which is half the

experimental value for the core biased value of Aldred &

Hart.

This Debye–Waller factor is not the complete description,

since the atomic vibrations are correlated due to the bonding.

An understanding of this is important because this ‘thermal

diffuse scattering’ (TDS) alters the distribution of intensity

and has an impact on any description of the diffraction process

that is concerned with modelling the profile. The detailed

physics is given in James (1962); however, it suffices here to

consider the vibrations as phonons of different wavelengths,

ranging from the smallest separation between atoms up to the

dimension of the crystallite. The dominant vibrations are

longer wavelengths where groups of atoms move together,

often termed acoustic phonons, whereas the high-frequency

vibrations, e.g. adjacent atoms moving in opposite directions,

are termed optical phonons. Each phonon creates a scattered

wave that modulates the average, leading to satellites centred

on the Bragg maximum. Since there are as many phonon

wavelengths as there are repeat units in any one direction,

these satellites merge to produce a redistribution of intensity

from the Bragg peak that diminishes in magnitude further

from the peak (decreasing in phonon wavelength). The fall in

the TDS intensity from a Bragg peak follows a 1/q2 form

(Cochran, 1969) and is an incoherent fraction of the peak

intensity (Harada & Sakata, 1974):

Iobs ¼ Ipeak þ
P

j

Ij TDSð Þ ¼ Ipeak 1þ
P

j

�j

 !
: ð35Þ

The variable �j is a complex function which includes the

inverse of the square of the circular frequency of the jth mode

at q, which can be related to the elastic parameters and is a

function of q. However, this can be complicated and modified

by data-collection strategies and temperature etc., for

example, large detector aperture and effects of anisotropy

(Stevens, 1974; Harada & Sakata, 1974); specimen size,

experimental conditions and how the correction varies with

sin �/� (Laktionov et al., 1991); temperature changes and

modification to the TDS/Bragg ratio (Reid, 1973). It is clear

from this that the TDS contribution is a variable parameter

that can be determined by experiment, since it modifies the

intensity profile and background. The Ipeak is the value that is

modified by the Debye–Waller factor and the total intensity is

unaltered, but just causes a redistribution of the intensity.

These thermal vibrations are important to consider if just the

peaks are measured and assigned to a structure factor.

Note 1. Experimental work on the GaN 0002 reflection from

a 4 mm thick buffer layer on a (000l) sapphire substrate grown

by metal organic chemical vapour deposition (MOCVD) is

difficult to fit with dynamical theory in terms of height and

width, but is much closer to kinematical theory, i.e. the peaks

are narrower and higher than expected. GaN is known not to

be perfect with threading dislocations along the growth

direction, and although the growth process is very well

controlled the quality from fitting to a substrate with a large

mismatch lends itself to kinematical rather than dynamical

theory. With the methods of sample preparation in powders

with strains and distortions being unavoidable, it is likely that

dynamical theory is inappropriate for typical powders.
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In an article entitled A new theory for X-ray diffraction [Fewster (2014). Acta

Cryst. A70, 257–282], hereafter referred to as NTXRD, it is claimed that when

X-rays are scattered from a small crystallite, whatever its size and shape, the

diffraction pattern will contain enhanced scattering at angles of exactly 2�B,

whatever the orientation of the crystal. It is claimed that in this way scattering

from a powder, with randomly oriented crystals, gives rise to Bragg scattering

even if the Bragg condition is never satisfied by an individual crystallite. The

claims of the theory put forward in NTXRD are examined and they are found to

be in error. Whilst for a certain restricted set of shapes of crystals it is possible to

obtain some diffraction close to (but not exactly at) the Bragg angle as the

crystallite is oriented away from the Bragg condition, this is generally not the

case. Furthermore, contrary to the claims made within NTXRD, the recognition

of the origin of the type of effects described is not new, and has been known

since the earliest days of X-ray diffraction.

1. Introduction

Despite the field of X-ray diffraction being more than a

century old, in an article entitled A new theory for X-ray

diffraction (Fewster, 2014), hereafter referred to as NTXRD, it

is claimed that a new theory of diffraction is required to

explain the intensities observed in powder diffraction and

other diffraction geometries. Within NTXRD a theory of

X-ray diffraction is proposed which predicts that ‘the scattering

from a crystal or crystallite is distributed throughout space

[which] leads to the effect that enhanced scatter can be observed

at the ‘Bragg position’ even if the ‘Bragg condition’ is not

satisfied’ and that ‘the scatter from a single crystal or crystallite,

in any fixed orientation, has the fascinating property of

contributing simultaneously to many ‘Bragg positions’’. If this

new approach were correct it would certainly have significant

implications for the whole field of X-ray diffraction, and given

the prominence afforded to this new theory (it featured on the

front cover of the published volume), its veracity or otherwise

deserves appropriate scrutiny. However, we show here that the

analysis presented within NTXRD is incorrect, and that the

underlying concepts upon which the theory is based are not

new but were known to the earliest pioneers of X-ray

diffraction.

At the outset we emphasize that in this article we will not

ourselves be undertaking the task of proposing an explanation

for the several interesting pieces of experimental data

presented by Fewster, which are certainly worthy of further

study and attention. Rather, our more restricted aim is to

demonstrate that the new theory that he puts forward is

incorrect, and we identify the sources of error in the argu-

ments put forward in NTXRD. Secondly, whilst the interested

reader would no doubt benefit from reading the NTXRD
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article in full, we present in the section below the key result of

the theory within NTXRD which we deem to be erroneous.

Thirdly, it is important to note that the new theory of X-ray

diffraction that Fewster puts forward is based on a set of

highly simplifying assumptions. These assumptions are the

very same approximations made over a century ago by the

doyens of the field. We adopt the same approach here:

following Fewster we will be assuming that the crystal of

interest is irradiated by a monochromatic plane wave with a

transverse coherence length larger than the crystal, and that

the diffraction observed in the far field is in the Fraunhofer

limit: that is to say that the size of the illuminated crystal is

w� ðR�Þ1=2, where R is the distance to the detector and � the

wavelength of the X-rays, such that the condition should be

reasonably well obeyed for diffraction from crystals of the

order of 1 mm in size when the detector is several tens of cm

distant. Further, the kinematic approximation with zero

absorption is also assumed, we treat the atoms as point scat-

terers, and neglect the effects of polarization and of finite

temperature. Whilst it is well known that the assumptions

made above can break down even for diffraction from small

crystallites (Shabalin et al., 2017), for the sake of direct

comparison we use the same assumptions as those made in

NTXRD.

2. Fewster’s theory

Consider the diffraction geometry shown in Fig. 1, adapted

from Fig. 4(a) of NTXRD. Fewster derives the following

formula [the square of the amplitude, A�2�, calculated in

equation (5) of NTXRD] for the scattered intensity from a set

of atoms, recorded by a detector placed at an angle 2� to a

beam of monochromatic radiation of wavelength � which is

incident at an angle � to the crystal plane:

Ið�; �Þ ¼ A�2�ðnÞ
�� ��2/

�����sinc
�Lx

�
cosð2� ��Þ � cosð�Þ½ �

� �

� sinc
�d

�
½2 sinð�Þ� � n�

� �
sinðNf�d

� ½2 sinð�Þ� � n�gÞ

sinf�d
� ½2 sinð�Þ� � n�g

�����
2

;

ð1Þ

where Lx is the length of the crystal, d is the plane spacing, n

denotes the ‘order’ of planes from which the X-rays are

diffracting and N is the number of planes in the stack

contributing to the reflection.

This formula predicts maxima in the scattered intensity

whenever � ¼ � (i.e. a specular peak) and when � ¼
arcsinðn�=2dÞ (the Bragg peak), no matter what angle the

crystal is placed at relative to the incident beam, and this

prediction forms the fundamental basis of the new theory of

diffraction described in NTXRD. However, equation (1) is

incorrect and, as we shall show, the actual formula for the

angle-dependent scattering, known since the earliest days of

X-ray diffraction, leads to substantially different conclusions.

We discuss the error in Fewster’s analysis in x3, after first

outlining the specific predictions of NTXRD.

In Figs. 2(a) and 3(a) we plot the intensity observed at 2�,

calculated from jA�2�ð1Þj
2 and j

P2
n¼0 A�2�ðnÞj

2, respectively,

where A�2� is defined as in equation (1), for a range of angles

of incidence, � ¼ f � �B. For this particular case we have set

�=d ¼ 0:5 and N ¼ 1000 [this ratio of wavelength to spacing is

within 2% of that used by Fewster, who uses a value of 0.491

corresponding to the diffraction of Cu K� radiation from the

(111) planes of silicon, although specific lattices are not

mentioned within NTXRD]. It can be seen in both figures that

for all values of � there is some enhanced scattering at a

position corresponding to exactly that of the Bragg condition,

along with a peak that corresponds to specular scattering (the

two being identical for f ¼ 1).

Note that the inclusion of the planes n ¼ 0 and n ¼ 2 makes

Fig. 2(a) identical to Fig. 5 of NTXRD. On the basis of this plot

it is claimed within NTXRD that for a set of crystallites with

random orientations the specular scattering associated with

each crystal will occur at different scattering angles, thus

producing a background intensity, whereas because each

crystallite produces some scattering at exactly the Bragg

condition, the intensities at the scattering angle 2�B from all of

the crystals add, giving rise to a sharp peak. This result forms

the basis of the work within NTXRD. However, we show

below this analysis to be in error.

3. The error in Fewster’s analysis

Fewster’s analysis contains three errors – one minor and two

major. Firstly, he states that the amplitude, A1, of X-rays

diffracted from a single (the first) plane shown in Fig. 1 is given

by

A1 / sinc
�Lx

�
cosð2� ��Þ � cosð�Þ½ �

� �
: ð2Þ

This is clearly the scattering amplitude from a uniform plane.

However, if instead we consider scattering from N discrete
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Figure 1
A schematic diagram of the diffraction setup. Radiation is incident on a
crystal plane at a variable angle �, and the detector is placed at an angle
of 2� with respect to the incident X-rays. � denotes the rotation axis used
in x7.
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Figure 2
A comparison of the predictions of (a) equation (1), the NTXRD result for n ¼ 1, and (b) equation (21), our result for a cubic shaped crystallite with
faces aligned to the cube axes, for radiation incident at an angle � ¼ f � �B for a variety of f values. Both distributions exhibit specular reflections. Whilst
the NTXRD result predicts a further peak at exactly 2�B, we find this second peak to vary in angle as described in the text.

Figure 3
A comparison of the predictions of the theory presented in (a) NTXRD and in (b) the theory represented by equation (20), including contributions from
higher-order planes. In addition to the deviations previously noted in Fig. 2, the higher-order terms of equation (20) produce subsidiary maxima in (b)
which are not present in (a).



atoms (assumed here to be point-like, i.e. ignoring the atomic

form factor) separated by a distance a, the scattered amplitude

from a single plane of atoms is

A1 /
sin �Nxa

� cosð2� ��Þ � cosð�Þ½ �
� �

sin �a
� cosð2� ��Þ � cosð�Þ½ �
� � : ð3Þ

This is only a minor error since, in the small-angle limit,

equations (2) and (3) are in very close agreement, but diverge

for larger angles (we discuss further the relationship between

the use of sinc functions to describe the diffraction and the

ratio of two sine functions in x4).

The first of the major errors in Fewster’s analysis

is as follows. He states correctly that the phase

difference for the scattering from successive planes, �’, is

ð2�=�Þd½sin �þ sin ð2� ��Þ�. However, he erroneously

assumes that this phase difference can be approximated as

ð2�=�Þð2dsin �Þ. This is incorrect, and it is this approximation

that leads to NTXRD always giving a peak in the scattered

intensity at the Bragg condition. We discuss the origin of this

approximation below. If one instead uses the correct phase

difference, then summing the complex amplitudes over the Ny

planes yields

Atot /
Pm¼Ny�1

m¼0

A1 expðim�’Þ; ð4Þ

which, on inserting the correct value of �’, yields

Atot /
sinf�Nxa

� ½cosð2� ��Þ � cosð�Þ�g

sinf�a
� ½cosð2� ��Þ � cosð�Þ�g

�
sinf

�Nya

� ½sinð2� ��Þ þ sinð�Þ�g

sinf�a
� ½sinð2� ��Þ þ sinð�Þ�g

; ð5Þ

where we have set d ¼ a (a simple cubic lattice) and which can

be recognized as the two-dimensional form of the result

obtained by Scherrer (1918), as outlined in the classic text by

Warren (1969).

A further error asserted within NTXRD is that the analysis

presented holds true for all crystal shapes. This is incorrect.

The results presented in this section only hold true for an

orthorhombic crystal with the sides cut parallel to the unit-cell

axes. We discuss diffraction from more general crystal shapes

in x5.

At this juncture we discuss in more depth the origin of the

specific error leading Fewster to assert that some peak in the

scattered intensity always occurs at the Bragg condition,

independent of �. Whilst we find it somewhat difficult to

follow the line of reasoning taken in NTXRD (as it appears to

rely on only taking into account specific scattering points,

rather than correctly summing all of the complex amplitudes

from all scatterers), during the preparation of this article Paul

Fewster drew our attention to one of his later articles within

which he puts forward additional arguments as to why he

maintains there is always enhanced scattering at the Bragg

condition (Fewster, 2016). However, whilst the additional

argument within Fewster (2016) is also deeply flawed, it does

give some further insight into the origin of the error. Consider

the diagram shown in Fig. 4 [adapted from Fewster (2016)],

which shows the path length l ¼ aþ b between two points

(where here a denotes the distance shown in Fig. 4, rather than

the lattice spacing): the first, P, in the upper plane, and a point

Q in the lower plane. As pointed out by Fewster, the differ-

ence in path length between the waves scattering from P and

Q is given by

l ¼ aþ b ¼
d

cos�
½sinð�þ �Þ þ sinð2� ��� �Þ�: ð6Þ

The nub of the claim in Fewster (2016) is that it can be shown

that for a fixed scattering point, P, the relevant number of

scattering points, Q, in the next plane that scatter with a path

length that differs from � by �� (where �� is some fixed

difference in path length that we choose such that ��� �)

maximizes at the Bragg condition � ¼ �B ¼ sin�1
ð�=2dÞ

independent of �, and hence enhanced scattering will always

be seen at the Bragg angle. This is illustrated in Fig. 3 of

Fewster (2016), which we shall in due course replicate below.

We assume that this is why, in Fewster (2014), he makes the

small-angle approximation detailed above. However, we

demonstrate below that the above claim is also false and

identify the origin of the error.

Let us consider how we should calculate the effective

length, �x, along the lower plane that contains points that

scatter in such a way so as to have a path length with respect to

P that differs from � by �� (as the relevant scattering

amplitude will be proportional to this length). Let the coor-

dinate of Q along its plane be x (such that the fixed x coor-

dinate of P is 0). Then, the length along the lower plane that

contains points that scatter with path lengths within �� of �
will be proportional to �x,

�x ¼ ��
dx

dl

� �
l¼�

¼ ��
dx

d�

� �
d�

dl

� �	 

l¼�

: ð7Þ

We state here the error that Fewster makes. He does not

calculate the number density of points in the second plane as a

function of the deviation in the path difference. Instead, he

calculates the number density of path lengths that are within

�� of � as a function of �, and then evaluates how many

scattering points in the second plane are associated with each

of the path lengths that fulfil this condition. To put it in simple

mathematical terms, he effectively only considers the second
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Figure 4
The geometry for calculating the positions Q, in terms of incident
angles and detector capture angles 2�, used to construct the path
lengths described by equation (6): l = a + b = ðd= cos�Þ½sinð�þ �Þ +
sinð2� ��� �Þ� [adapted from Fewster (2016)].



term appearing in the chain rule on the right-hand side of

equation (7), i.e. he erroneously assumes

�x0 / ��
d�

dl

� �
l¼�

: ð8Þ

That this is being assumed can be confirmed by examining

the short Python code in the supporting information to

Fewster (2016), from which Fig. 3 in that article is produced,

and from the statement within Fewster (2016) that ‘we can

decide on an acceptable path difference, � ¼ jaþ b� n�j and

sum the number of � values, for specific � and 2� values, that

have a path difference <�’. Whilst this term does indeed peak

close to the Bragg angle for all �, it does not represent the

required physical quantity which is correctly described by

equation (7). When multiplied by the second term in the chain

rule [i.e. equation (7) is evaluated], this effect vanishes, as

would be expected. Let us now show this. From equation (6)

differentiation of l with respect to � yields

dl

d�
¼ d sec2 �½cos �� cosð2� ��Þ�: ð9Þ

However, to evaluate equation (8) we seek solutions where

the �� is the deviation in path length from �. Now, by

rearrangement of equation (6) with aþ b ¼ �

tan� ¼
½sin �þ sinð2� ��Þ� � �=d

½cosð2� ��Þ � cos ��
: ð10Þ

Substituting this solution for tan � (with l ¼ �) from equation

(10) into equation (9) we find

d�

dl

� �
l¼�

¼

½cosð2� ��Þ � cos ��

½cosð2� ��Þ � cos ��2 þ ½sin �þ sinð2� ��Þ � �=d�2
:

ð11Þ

We plot �x0ð�; �Þ calculated from equations (8) and (11) in

Fig. 5, using the same ratio of � and d (�=d ¼ 0:5) as used in

Fewster (2016). It can be seen that whilst equation (11) does

not appear in Fewster (2016), this plot is indeed identical in

form to Fig. 3 in Fewster (2016). We stress again that this does

not represent the relevant number of points along the scat-

tering plane that scatter with path lengths within �� of �. That

density is represented by equation (7), which we now evaluate.

Consider the first term in the chain rule of equation (7). As

x ¼ d tan �, then, without setting the constraint l ¼ �,

dx

d�

� �
¼ d sec2 �; ð12Þ

and substituting equations (9) and (12) into equation (7) we

find

�x ¼ ��
1

½cos �� cosð2� ��Þ�
: ð13Þ

We note that this is a function with no dependence on �. Since

in the derivation above we have not yet set the constraint

l ¼ �, a large value of �x represents a turning point in the

path difference of any value, l0. From equation (13), we see

that �x always maximizes upon the specular condition being

met (� ¼ �) (or conversely we can say that the path length as

a function of the position of Q minimizes at this condition),

and thus for �x to maximize under the constraint that l ¼ �,

then � ¼ � ¼ �B, consistent with traditional diffraction

theory. As expected, no scattering peak at �B is seen at any

other value of �.

4. Calculation of the scattered intensity

In order to elucidate further errors described in NTXRD, in

this section we note the well known result that equation (5)

can, via the method of Poisson sums, be written in terms of the

Fourier transform of the shape function of an orthorhombic

shaped crystal (sinc functions) centred on the infinite reci-

procal lattice [see equation (20) below]. By use of such shape

functions we will, in x5, show results for diffraction from

spherical crystals, which are also discussed erroneously in

NTXRD.

Furthermore, we will demonstrate that some enhancement

close to, but not exactly at, the Bragg condition can arise from

the conventional analysis of diffraction from certain planes of

a restricted set of shapes of crystals, without the need to

appeal to a new theory. By working in reciprocal space we

illustrate the origin of these ‘Bragg-like’ peaks, as well as of

the specularly diffracted radiation, and show that, contrary to

the claims within NTXRD, these types of effects are well

known.

Under the simplifying assumptions made in x1, the intensity

of radiation scattering from a crystal of N atoms is given by

Ið�kÞ ¼ Að�kÞ
�� ��2/ PN

j¼1

fj expði�k � rjÞ

�����
�����

2

; ð14Þ

where �k is the difference between the wavevectors of the

incident and scattered radiation, rj is the position of atom j and

fj is the usual atomic form factor. In order to calculate the

diffraction pattern from a finite crystal of a particular shape,
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Figure 5
A plot of �x0 as a function of � and � as calculated from equation (8).
Note this is identical in form to Fig. 3 in Fewster (2016).



we use the method of Poisson sums in three dimensions (Stein

& Weiss, 1971), which gives, for a well behaved function g,P
r2�

gðrÞ ¼
P

G2 ~��

~ggðGÞ; ð15Þ

where � and ~�� are the direct and reciprocal lattices, respec-

tively, G is a reciprocal-lattice vector and ~gg is the three-

dimensional Fourier transform of g.

We consider first a crystal infinite in extent. By writing

rj ¼ r� þ �rj, where �rj is the relative coordinate of the atom

in the basis and r� is the position of the associated lattice

point, equation (14) can be rewritten as sums over the lattice

vectors r� and the basis B:

PN
j¼1

fj expði�k � rjÞ

�����
�����

2

¼

����� Pj2B

fj expði�k � �rjÞ

" #

�
P
r�

expði�k � r�Þ

" #�����
2

: ð16Þ

At this stage, assuming that the left-hand side of the above

equation extends over an infinite crystal, we can apply equa-

tion (15), giving the result that diffraction only occurs when

the Bragg condition is satisfied:

I1 / Fð�kÞ
P
G

�3ð�k�GÞ

����
����

2

; ð17Þ

where Fð�kÞ is the geometric structure factor

FðkÞ ¼
P

j2B fj expði�k � �rjÞ.

For a crystal that is finite in extent, the sum can be extended

over the infinite lattice � by introducing a function, gSðrÞ, to

describe the shape of the crystal, such that gSðrÞ ¼ 1 within the

volume S enclosed by the surface of the crystallite, and 0

elsewhere. Equation (14) can then be written

PN
j¼1

expði�k � rjÞ

�����
�����

2

¼ Fð�kÞ
P
r2�

expði�k � rÞ � gSðrÞ

����
����

2

: ð18Þ

Thus, using equation (15) and the convolution theorem,

Ið�kÞ / Fð�kÞ
P
G

~ggS �k�Gð Þ

����
����

2

: ð19Þ

Here ~ggS is the three-dimensional Fourier transform of the

shape function (‘the shape transform’). In reciprocal space,

equation (19) has a simple geometric interpretation: it is the

convolution of the shape transform ~ggS with the reciprocal

lattice.

For the purposes of this article, we will be dealing with a

single-atom basis and we shall also assume point-like scat-

tering, such that we may assume throughout that fj and F are

independent of �k. As with the initial analysis of NTXRD, we

have also ignored the effects of absorption and extinction.

Consider a crystallite with a primitive cubic lattice of lattice

spacing a. We assume that the shape of the crystallite is

orthorhombic and that the normals to the faces of the cube lie

along the principal axes of the cubic unit cell such that the size

of the crystallite Lx;y;z ¼ Nx;y;za. The reciprocal lattice is cubic,

with reciprocal-lattice spacing 2�=a, and this is convolved with

the shape transform of the crystal such that equation (19)

yields

Ið�kÞ /

�����PG sinc Lx

2 ð�kx �GxÞ
� �

sinc
Ly

2 ð�ky �GyÞ

h i

� sinc
Lz

2
ð�kz �GzÞ

	 
�����
2

: ð20Þ

The equation above shows the link between the form used by

Scherrer [equation (5), ratios of sine functions] and a set of

sinc functions which are functions of ð�ki �GiÞ, but then

summed over all reciprocal-lattice vectors. The two forms

produce identical results, but using the approach of equation

(19) is more convenient for the present discussion, as it allows

us readily to calculate the diffracted intensity for crystallites of

arbitrary shape.

A schematic plot of the distribution of intensity in the

�kx;�ky plane of reciprocal space given by equation (20) is

shown in Fig. 6. We note that this figure is identical in form to

Fig. 6-3(1) in the book edited by Ewald (1962).

For the sake of simplicity, consider now a crystal that is

cubic in shape, such that Lx ¼ Ly ¼ Lz. Fig. 6 shows the

position �k in reciprocal space corresponding to the scat-

tering geometry of Fig. 1, where the cubic shaped crystal is set

up for diffraction from the (010) planes, which also form a

planar surface of the crystallite. Assuming that the number

of planes is large, we can assume that for regions close to

the Bragg condition G ¼ ð0; 2�=a; 0Þ dominates in the sum

in equation (20). From the geometrical construction in Fig. 6

we see that �kx = ð2�=�Þ½cosð2� � �Þ � cosð�Þ�, �ky =

ð2�=�Þ½sinð2� � �Þ + sinð�Þ�, �kz ¼ 0 so that equation (20)

becomes
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Figure 6
A plot of the intensity in reciprocal space predicted by equation (20) for a
crystal with a cubic lattice, and of cubic shape, with the orientations of the
crystal faces along the principal axes as described in the text. The incident
and scattered X-rays and Ewald sphere corresponding to the setup in
Fig. 1 are also shown.



Ið�; �Þ /

�����sinc
�Lx

�
cosð2� ��Þ � cosð�Þ½ �

� �

� sinc
Ly

2

2�

�
sinð2� ��Þ þ sinð�Þ½ � �

2�

a

� �� ������
2

:

ð21Þ

The intensity predicted by equation (21) is plotted in Fig.

2(b) for �=a ¼ 0:5 and Nx ¼ Ny ¼ Lx=a ¼ 1000. We note that

the first term in equation (21) is identical to that in equation

(5) of NTXRD [our equation (1)] for the case n ¼ 1, and

hence still gives rise to a specular peak when � ¼ �. However,

we no longer find a peak at exactly the Bragg condition as the

angle � deviates from �B. Nonetheless, we do find a peak at an

angle

2� ¼ �þ arcsin
�

a
� sinð�Þ

	 

; ð22Þ

which for small deviations from the Bragg angle, � ¼ �B þ ��,

gives a peak in the intensity distribution when the detector is

at an angle

� ’ �B þ tanð�BÞ��
2: ð23Þ

This ‘pseudo-Bragg’ peak is thus, for this particular case, a

weak function of ��, but we note that in contrast to NTXRD

we do not find a diffraction peak exactly at the Bragg angle as

the crystal is rotated away from the Bragg condition.

Recalling the error in the derivation of equation (1)

[equation (5) of NTXRD] as outlined in x3, we note that,

comparing our result with that of NTXRD, it can be seen that

if the approximation that � ¼ � is made in the second term

(but not the first) of equation (21), then the NTXRD formula,

equation (1), is recovered.

We can also see from Fig. 6 that, for values of � significantly

larger than �B, the Ewald sphere would intersect arms of the

shape function that are associated with being centred on

reciprocal-lattice vectors with ðhklÞ different from (010). We

thus plot in Fig. 3(b) the intensity predicted by the full formula

of equation (20), accounting for all reciprocal-lattice vectors

with h; k or l less than or equal to 2. As predicted, additional

peaks seen around the detector positions of 2� ’ 60� are

visible, due to the Ewald sphere crossing the ‘arms’ of the

shape transform lying between (110) and (120).

5. Geometrical interpretation and the general case

A consideration of the geometry of the shape transform shown

in Fig. 6 enables us to see why we observe a specular peak in

intensity for this particular cubic shaped crystal, why this

crystal also provides a peak in scattered intensity at an angle

close to (but not exactly at) the Bragg angle when it is oriented

away from the Bragg condition, and why in the general case

NTXRD is incorrect.

The specular peak can be explained as follows. For an

orthorhombic shaped crystal, with the facets cut as described

thus far, the sinc functions associated with the shape transform

form ‘arms’ of intensity parallel to the kx; ky; kz axes in reci-

procal space. If the reflection in which we are interested has a

reciprocal-lattice vector which lies along one of these arms

then the arms of the shape function form a chord on the Ewald

sphere (for the crystal cut as described here, any reciprocal-

lattice vector in the family {m00} will meet this criterion). As

can be seen from Fig. 6 the length of this chord will change as

we vary �, but at a scattering angle 2� ¼ 2� such that the

reflection is always specular – a point to which we will return

later.

The constructions in reciprocal space also allow us to see

why we obtain some, albeit weak, scattering at close to (but

not exactly at) the Bragg angle as this particular crystal is

rotated for scattering associated with this particular

reciprocal-lattice vector. Consider Fig. 7(a), where we show

the shape transform for our cubic crystal at the Bragg condi-

tion and slightly rotated away from it. As an arm of the shape

transform at the Bragg condition is perpendicular to the

reciprocal-lattice vector, the position where the Ewald sphere

crosses the arm of the shape transform is such that the angle of

2� at such a point is initially a slowly varying function of the

angle of rotation.
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Figure 8
A schematic diagram of the shape transform in reciprocal space for a
cubic crystal rotated such that radiation reflects from (110). Unlike for
the (010) reflection, this does not exhibit a persistent pseudo-Bragg or
specular peak in the intensity distribution.

Figure 7
The maxima of the shape transforms for a cubic crystal (a) and a spherical
crystal (b) are shown in schematic form for crystals rotated 6� from
the Bragg condition for the (010) reflection. The k0 vectors indicate the
intersection of the Ewald sphere and the shape transform maxima. The
spherical shape transform has been truncated for clarity to only show
the first three maxima.



We thus predict that diffraction from the same crystallites as

considered to date (i.e. comprising a primitive cubic lattice,

and cubic in shape with facets along the principal axes), but

now diffracting from the (110) planes, will not exhibit peaks at

the specular condition, or close to the Bragg condition when �
deviates from �B. This can be seen from a sketch of the

geometry in Fig. 8, where we can see that the arms of the shape

transform are rotated �=4 with respect to the reciprocal-lattice

vector.

This is indeed the case, and in Fig. 9(b) we show the results

of the intensity predicted by equation (20) when diffracting

from the (110) plane as a function of f as the crystal is rotated

about the (001) axis. Once more we take �=a ¼ 0:5, so that

�=d110 ¼ 0:709 and Nx ¼ Ny ¼ 1000. There is no peak in the

diffracted intensity at the specular position, and diffraction

associated with the original Bragg peak falls rapidly in

intensity as f differs from 1.

This lies in stark contrast to the NTXRD result for the same

reflection, seen in Fig. 9(a), which shows no qualitative

difference to Fig. 2(a) besides the shifting of the Bragg angle.

Finally in this section we consider diffraction from a sphe-

rical crystal. We do so as within NTXRD it is claimed that ‘the

introduction of various shapes creates a different distribution of

fringing, but the enhancement at [the Bragg angle] is still

present ’ – i.e. there is always an enhancement exactly at the

Bragg angle, and spherical crystals are explicitly considered

within NTXRD. As the Fourier transform of a solid uniform

sphere can be written in terms of the half-integer Bessel

functions of the first kind, for a spherical crystal of radius R

(where we assume R is large compared with the lattice

spacing), equation (19) can be written

Ið�kÞ /
X

G

sinðj�k�GjRÞ � j�k�GjR cosðj�k�GjRÞ

j�k�Gj3

�����
�����

2

:

ð24Þ

Thus, as can be seen from the reciprocal-space plot shown in

Fig. 7, the spherical crystal shows a completely different

pattern to that present in the cubic crystal previously

discussed. Unlike the cubic shape transform’s distinct ‘arms’

which gave rise to the specular and slow-moving peaks, ~ffsphere

exhibits ‘ripples’, which cross the Ewald sphere a large

number of times, giving rise to an extremely large number of

residual peaks around a central maximum, the exact number

of which changes rapidly as a function of crystal rotation.

The intensity as a function of f for a spherical crystal is

shown in Fig. 10 for �=a ¼ 0:5 and R ¼ 500a. This figure is

otherwise an exact replica of Fig. 2. Therefore, by the claims of

NTXRD, we should see the same enhancement at the Bragg

peak even when the Bragg condition is not satisfied, as well as

specular reflections as observed in Fig. 2. However, no such

features are observed, with only significant diffraction occur-

ring at the Bragg condition, as expected.

We note that the fact that equation (24) describes the

diffraction from spherical crystals has been recognized by

other authors (Öztürk et al., 2015).
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Figure 9
Intensity distribution contribution from the (110) reflection for the cubic crystal, using (a) the NTXRD method and (b) the method of equation (19).
Note that while the two methods produced broadly similar results for the (010) reflection in Fig. 2, for this reflection they produce very different results.

Figure 10
Intensity distribution for radiation incident at an angle � ¼ f � �B to the
(010) plane of a spherical crystal, for a variety of values of f, as calculated
from equation (24).



6. Size broadening

Thus, contrary to the claims made within NTXRD, crystals

with different shapes do not have a persistent peak at the

Bragg condition when � differs from �B. Indeed, the effects

discussed thus far were already well understood in the earliest

days of X-ray diffraction, and the widths of the Bragg peaks

have been (within the approximations of this simple model)

understood for of the order of a century. The Scherrer equa-

tion (Scherrer, 1918; Patterson, 1939) relates the peak width

(full width at half-maximum, FWHM), �ð2�Þ, to the crystallite

dimension L for nano-scale particles (L<	 0:2 mm):

�ð2�Þ ¼
K�

L cosð�Þ
; ð25Þ

where K is the Scherrer constant, a function of crystal shape

and which typically has a value of the order Oð1Þ.

Fig. 11 shows a simulation of the variation of the FWHM of

the central peak with the crystallite dimension L of a variety of

crystal shapes [cuboid (Nx 6¼ Ny), cubic (Nx ¼ Ny) and sphe-

rical] calculated using equation (19). As a comparison, the

region described by the Scherrer equation for 0:75<K< 1:4
is also plotted, and it can be seen that all three of the simu-

lations fall within this region.

More detailed analysis shows that each of these lines is

accurately fitted by the Scherrer equation (within the nano-

crystallite regime) with K values of 0.854, 0.898 and 1.156,

respectively. Furthermore, that the finite size of crystals would

give rise to diffraction away from the Bragg condition has also

long been recognized (Bragg & Lipson, 1938).

7. Rotations about two axes

As well as calculating the diffracted intensity for crystallites

rotated about an axis perpendicular to the plane containing

the source and detector, results are also given within NTXRD

for simultaneous rotations of the crystallites through angles �
about a second axis, perpendicular to the first – being parallel

to the x axis and passing through the crystal, as shown in Fig. 1.

We consider once more the cubic shaped crystal, initially set

up for Bragg diffraction from (010). We calculate the intensity

at any given scattering angle as a function of � and � from

equation (20).

We consider diffraction in the Bragg–Brentano geometry

(Bragg, 1921; Brentano, 1946), in which the detector is rotated

along with the sample, such that � ¼ �. Once more we

consider a cubic shaped crystal with a primitive cubic lattice

and set �=a ¼ 0:5. We show in Fig. 12 the intensity prediction

as a function of � and �.

The (010) peak in the scattering occurs, as expected, at the

Bragg condition, ð�; �Þ ¼ ð0:253; 0Þ, but we note that we can

also observe a number of other Bragg peaks, with the (020)

peak occurring at ð�; �Þ ¼ ð0:525; 0Þ, and finally the ð011Þ and

ð011Þ at ð�; �Þ ¼ ð0:362;
�=4Þ, respectively. The scattered

intensity that can be seen along � ¼ 0 corresponds in form to

the intensity as a function of 2� shown in Fig. 3 for n ¼ 1.

In addition to these features, we also see an arc in the

intensity distribution, passing through the Bragg condition,

such that for values of � greater than that at the Bragg peak,

for fixed � two further peaks are seen at finite �. These peaks

are easily understood in terms of the shape transform in

reciprocal space. As the shape transform associated with the

reciprocal-lattice point is rotated about the x axis, the arms of

the shape transform lying along kz intersect the Ewald sphere

for � � �B; similar arcs can be observed elsewhere in the

pattern, associated with the (020), (011) and (011) reflections,

as expected from this model.

At this juncture it would be useful for the reader to refer to

Fig. 7 of NTXRD, which we have reproduced in Fig. 13(a).

Our Fig. 12 resembles the NTXRD figure in a remarkable

fashion, with the only major difference being that the NTXRD

graph contains only contributions from (010), and hence does

not display the other Bragg peaks. Some care should be taken

in comparing the two plots, as we believe that Fewster may be

assuming diffraction from the (111) plane of silicon, which has

an f.c.c. (face-centred cubic) lattice – however the important
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Figure 11
The FWHM of the diffracted intensity for a variety of crystal sizes and
shapes calculated using equation (19). Each of these is accurately fitted by
the Scherrer equation with K in the expected region.

Figure 12
The intensity distribution for a two-axis rotation in the Bragg–Brentano
geometry is shown for a cubic crystal of dimension 0.8 mm. Four Bragg
peaks can be observed, as well as a series of arcs connecting them.



point is that in NTXRD it is stated that Fig. 7 of that article is

calculated for a fixed detector as � and � are varied. We

disagree that the sort of behaviour we observe in our Fig.

13(a), and in Fig. 7 of NTXRD, can correspond to the fixed

detector geometry; it should only arise for the Bragg–

Brentano geometry used to produce Fig. 12. Indeed, we plot in

Fig. 13(b) the prediction of equation (20) for a fixed detector

(a=� ¼ 0:5, Nx ¼ Ny ¼ 1000). As expected from any conven-

tional diffraction theory, under such conditions we then find

only significant diffraction at the Bragg position itself.

It should be noted that the reverse does not hold true: the

NTXRD prediction for a Bragg–Brentano detector does not

resemble either Fig. 12 or Fig. 13(b).

8. Conclusion

The effects that the finite size of crystals has on X-ray

diffraction have been discussed and considered since soon

after the foundation of the field. Within NTXRD mistakes are

made in summing the phases of scattered X-rays from a crystal

with an orthorhombic shape, which lead to the incorrect

conclusion that such crystals always have some peak in scat-

tering at the Bragg condition. It is also claimed that this result

holds for crystals of a general shape. As we have shown, these

conclusions are in error, and the effects that the shape and

finite size of crystals have on the diffraction pattern are well

described by conventional diffraction theory.

Whilst a study of finite crystallite size effects will no doubt

continue to be of importance in relating experimental and

computed diffraction profiles, and the experimental data

presented in Fewster (2014) and Fewster (2016) are no doubt

worthy of further study, the specific claim made within

NTXRD that simple theory predicts a peak in the scattered

intensity to occur exactly at the Bragg condition when small

crystallites are rotated away from that condition is false.
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Figure 13
The intensity distribution for a two-axis rotation for a fixed detector is
shown for a cubic crystal of dimension 0.8 mm using (a) the NTXRD
formula and (b) equation (20).
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