Two types of adjacent dimer layers in the low-temperature phase of $\text{BaCuSi}_2\text{O}_6$

D. Sheptyakov1, V. Pomjakushin1, R. Stern2, I. Heinmaa2, H. Nakamura3, T. Kimura3

1Laboratory for Neutron Scattering, Paul Scherrer Institut, Villigen PSI, Switzerland, 2National Institute of Chemical Physics and Biophysics, Tallinn, Estonia, 3Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan

The low-temperature crystal structure of $\text{BaCuSi}_2\text{O}_6$ has been investigated with high-resolution synchrotron x-ray and neutron powder diffraction techniques and has been found to be on average (ignoring the incommensurate modulation) orthorhombic, with the most probable space group Ibam. The Cu-Cu dimers in this material are forming two types of layers with distinctly different interatomic distances. Subtle changes also modify the partially frustrated interlayer Cu-Cu exchange paths. The present results corroborate the interpretation of low-temperature nuclear magnetic resonance and inelastic neutron scattering data in terms of distinct dimer layers. The experimentally determined low-temperature crystal structure of $\text{BaCuSi}_2\text{O}_6$ is discussed in terms of its relation to the newer findings of theory and of the complementary experiments.

Keywords: phase transitions, x-ray and neutron diffraction