Poster Presentation

MS09.P02

Phase behavior and thermoelastic properties of SnMo₂O₈ under hydrostatic pressure

L. Gallington¹, A. Wilkinson^{1,2}, L. Rosa de Araujo³, J. Evans³

¹Georgia Institute of Techonology, School of Chemistry and Biochemistry, Atlanta, GA, USA, ²Georgia Institute of Techonology, School of Materials Science and Engineering, Atlanta, GA, USA, ³Department of Chemistry, Durham University, Durham, United Kingdom

SnMo₂O₈ has been shown to exhibit very different phase behavior and thermal expansion from previously studied members of the AM₂O₈ family.¹ At high temperatures, SnMo₂O₈, ZrW₂O₈, and ZrMo₂O₈ assume cubic structures with orientationally disordered MO₄ tetrahedra; however, their behavior is widely divergent at lower temperatures. ZrMo₂O₈ maintains its disordered structure and continues to display negative thermal expansion (NTE). While cubic symmetry is retained when cooling ZrW₂O₈, its WO₄ tetrahedra become ordered, and its NTE increases in magnitude. Rapid cooling of SnMo₂O₈ leads to a cubic structure that only minimally differs from its high temperature form.¹ Slowly heating this cubic phase results in a transformation to a rhombohedral (y) structure with ordered MoO₄ tetrahedra that is not isostructural to any known phases of ZrW₂O₈ and ZrMo₂O₈.¹ In stark contrast to ZrW₂O₈, and ZrMo₂O₈, all SnMo₂O₈ phases exhibit positive thermal expansion.¹ In the current work, the phase behavior and thermoelastic properties of cubic SnMo₂O₈ under hydrostatic conditions were investigated via in situ synchrotron x-ray powder diffraction in a recently designed sample environment.² Previous studies of ZrW₂O₈ and ZrMo₂O₈ in this environment have shown that pressureinduced disordering of MO₄ tetrahedra, which only occurred in the orientationally ordered low temperature ZrW₂O₈ phase, was linked to both elastic softening on heating and enhancement of NTE.³ At 298K, cubic SnMo₂O₈ is significantly softer (kT =30GPa) than ZrW2O8 (64GPa) and ZrMo₂O₈ (43GPa).³ Unlike ZrW₂O₈, which softens upon heating to 516K ($\Delta \kappa T = -9$ GPa), SnMo₂O₈ stiffens (+5GPa) more than ZrMo₂O₈ (+2GPa).³ The phase behavior of SnMo₂O₈ under pressure also differs from that of ZrW₂O₈ and ZrMo₂O₈. Compression elevated the y->cubic transition temperature significantly: at ambient temperature, this transition occurs at ~435K; at 310MPa, it occurs at ~490K.

[1] S. E. Tallentire, F. Child, I. Fall et al, J. Am. Chem. Soc., 2013, 135, 12849, [2] A. P. Wilkinson, C. R. Morelock, B. K. Greve et al, J. Appl. Crystallogr., 2011, 44, 1047, [3] L. C. Gallington, K. W. Chapman, C. R. Morelock et al, Phys. Chem. Chem. Phys., 2013, 15, 19665

Keywords: phase behavior, thermoelastic properties, AM₂O₈