Microsymposium

MS17.O05

The impact of pressure on β-Cyclodextrin•acetaminophen inclusion complexes

S. Saouane1, W. Morgenroth2,3, H. Liermann3, C. Paulmann4,5, F. Fabbiani1

1Georg-August-Universität Göttingen, GZG Abt. Kristallographie, Göttingen, Germany, 2Goethe-Universität Frankfurt, Institut für Geowissenschaften Abt. Kristallographie, Frankfurt am Main, Germany, 3Deutsches Elektronen-Synchrotron DESY, Photon Science (ECB), Hamburg, Germany, 4Deutsches Elektronen-Synchrotron DESY, HASYLAB, Hamburg, Germany, 5Universität Hamburg, Mineralogisch-Petrographisches Institut, Hamburg, Germany

Cyclodextrins (CDs) have attracted considerable interest as model systems in supramolecular host-guest chemistry. They are described as hollow truncated cones with a hydrophilic outer surface and a nonpolar inner cavity suitable for small molecules’ encapsulation.\cite{1} By virtue of their character, CDs are used as excipients to improve the aqueous solubility of active pharmaceutical ingredients (APIs). High-pressure crystallisation techniques have been established as a suitable tool for exploring the phenomenon of polymorphism and solvate formation of pharmaceutical compounds throughout numerous examples reported in the literature.\cite{2} Thus, exploring the inclusion-complex formation and the polymorphic behaviour of CDs with APIs at high pressure would be an interesting extension of the technique. The present work describes the attempt of an in-situ crystallisation of β-CD•acetaminophen inclusion complex and compression studies of the known β-CD•acetaminophen complex\cite{3} in different crystallisation media at pressures up to 1.0 GPa. A new high-pressure crystal form observed at 0.8 GPa as well as unexpected results are presented herein. The crystals have been characterised by means of polarised optical microscopy, Raman spectroscopy and single-crystal X-ray diffraction using both home and synchrotron sources.

Keywords: cyclodextrin, high-pressure, polymorphism