Microsymposium

MS21.O04

Structural basis for substrate recognition mechanism of ER glucosidase II

T. Satoh1,2, T. Toshimori1, T. Yamaguchi1,3, Z. Tong1,3, K. Kato1,3

1Nagoya City University, Graduate School of Pharmaceutical Sciences, Nagoya, Japan, 2JST, PRESTO, Nagoya, Japan, 3National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, Okazaki, Japan

The endoplasmic reticulum (ER) possesses a sophisticated quality control system to proofread newly synthesized proteins. A series of N-linked oligosaccharide intermediates attached on the nascent proteins serves as specific tags for the quality control system. In this system, glucosidase II is involved in trimming of non-reducing terminal glucose residue of N-glycan intermediates. Glucosidase II consists of approximately 110 kDa catalytic α subunit (GIIα) and 60 kDa non-catalytic regulatory β subunit (GIIβ). It has been shown that GIIα alone can hydrolyze a small α-glycosidase model substrate (pNP-glucose), while it cannot catalyze deglucosylation of the N-linked oligosaccharide substrates unless it makes a complex with GIIβ. In this study, we determined the first crystal structure of GIIα in the absence and presence of its inhibitor 1-deoxynojirimycin at 1.6-Å resolution. The crystal structure revealed that GIIα has a characteristic segment at the N-terminus as compared with the cognate glycoside hydrolases (GH31). Interestingly, the N-terminal segment was accommodated on the substrate-binding pocket. Based on these results, we suggest that the N-terminal segment of GIIα undergoes structural rearrangement through interaction with GIIβ, thereby promoting the substrate-binding capacity for the N-linked oligosaccharide substrates.

Keywords: protein X-ray crystallography, glycoside hydrolase, quality control system