Microsymposium

MS21.004

Structural basis for substrate recognition mechanism of ER glucosidase II

T. Satoh^{1,2}, T. Toshimori¹, T. Yamaguchi^{1,3}, Z. Tong^{1,3}, K. Kato^{1,3}

¹Nagoya City University, Graduate School of Pharmaceutical Sciences, Nagoya, Japan, ²JST, PRESTO, Nagoya, Japan, ³National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, Okazaki, Japan

The endoplasmic reticulum (ER) possesses a sophisticated quality control system to proofread newly synthesized proteins. A series of N-linked oligosaccharide intermediates attached on the nascent proteins serves as specific tags for the quality control system. In this system, glucosidase II is involved in trimming of non-reducing terminal glucose residue of N-glycan intermediates. Glucosidase II consists of approximately 110 kDa catalytic α subunit (GII α) and 60 kDa non-catalytic regulatory β subunit (GII β). It has been shown that GII α alone can hydrolyze a small α -glycosidase model substrate (pNP-glucose), while it cannot catalyze deglucosylation of the N-linked oligosaccharide substrates unless it makes a complex with GII β . In this study, we determined the first crystal structure of GII α in the absence and presence of its inhibitor 1-deoxynojirimycin at 1.6-Å resolution. The crystal structure revealed that GII α has a characteristic segment at the N-terminus as compared with the cognate glycoside hydrolases (GH31). Interestingly, the N-terminal segment was accommodated on the substrate-binding pocket. Based on these results, we suggest that the N-terminal segment of GII α undergoes structural rearrangement through interaction with GII β , thereby promoting the substrate-binding capacity for the N-linked oligosaccharide substrates.

Keywords: protein X-ray crystallography, glycoside hydrolase, quality control system