Microsymposium

MS23.003

Structural Basis for Emergence of Superionic Conductivity by an Ion Exchange

<u>K. Kato</u>^{1,2}, H. Kasai^{1,2}, A. Hori¹, M. Takata¹, S. Kitagawa^{1,3}, H. Tanaka⁴, A. Kobayashi⁵, N. Ozawa^{2,5}, M. Kubo⁵, H. Arikawa^{2,6}, T. Takeguchi^{2,6}. M. Sadakivo^{2,7}. M. Yamauchi^{2,7}

¹RIKEN SPring-8 Center, Hyogo, Japan, ²JST, CREST, Saitama, Japan, ³Kyoto University, Kyoto, Japan, ⁴Shimane University, Matsue, Japan, ⁵Tohoku University, Sendai, Japan, ⁶Iwate University, Morioka, Japan, ⁷Kyushu University, Fukuoka, Japan

Various superionic conductors have been examined in terms of the application to electrolytes for solid fuel cells [1]. Recently we demonstrated by impedance measurements that a simple two-step chemical reaction transformed an electronic conductor Na_xCOO_2 into a superionic one. In the present study, we performed in situ synchrotron X-ray diffraction experiments to investigate a structural mechanism for the superionic conductivity driven by the chemical treatment of the layered oxide Na_xCOO_2 . We developed a temperature- and humidity-controllable capillary cell under hydrogen and helium gas flow to install in the Debye-Scherrer camera at BL44B2 of SPring-8. This cell allows us to explore a structural transformation process by reduction and humidification treatments. Structural identifications and refinements with in situ diffraction data proved that Co vacancies formed by a CoO separation suppressed the electronic conductivity. Meanwhile it turned out from charge estimation in the Na layers that the superionic conductor transition originated from an ion exchange of H_3O^+ for Na^+ , which was confirmed by Raman spectroscopy measurements. In addition, charge densities clearly visualized the H_3O^+ ions disordering around the Na original sites, suggesting that the H_3O^+ behave as a carrier source. Finally it was found from electrostatic potentials that the disordering H_3O^+ sites were coupled through shallow potential barriers to trace a honeycomb-like ion pathway. In the presentation, I will discuss what a carrier is for the superionic conductive phase from different viewpoints such as activation energies, concentration cell tests, and molecular dynamics simulations using the experimental structure information.

[1] R. Makiura, T. Yonemura, T. Yamada, et al., Nature Mater. 8, 476 (2009).

Keywords: In Situ SR Powder Diffraction, Electrostatic Potential, Ionic Conduction Path