Microsymposium

MS29.005

Structure of muscle a-actinin: Insights into its regulation and Z-disk assembly

E. Ribeiro¹, N. Pinotsis¹, A. Ghisleni², A. Salmazo¹, P. Konarev³, J. Kostan¹, E. Gkougkoulia¹, F. Aachmann⁴, K. Pirker⁶, D. Svergun³, M. Gautel², <u>K. Djinovic-Carugo¹</u>

¹University of Vienna, Max F. Perutz Laboratories, Department of Structural and Computational Biology, Vienna, Austria, ²King's College London BHF Centre for Research Excellence, Randall Division for Cell and Molecular Biophysics and Cardiovascular Division, London, UK, ³EMBL-Hamburg c/o DESY, Hamburg, Germany, ⁴Norwegian University of Science and Technology, Department of Biotechnology, Norway, ⁵ETH-Hönggerberg, Laboratory of Physical Chemistry, Zurich, Switzerland, ⁶University of Natural Resources and Life Sciences, Division of Biochemistry, Department of Chemistry, Austria, ⁷University of Ljubljana, Department of Biochemistry, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia

 α -Actinin is the major component of the Z-disk, where it cross-links actin filaments from adjacent sarcomeres. It is an antiparallel dimer of 200 kDa, containing in each subunit an N-terminal actin binding domain (ABD), a central rod domain assembled from spectrin-like repeats that mediate the antiparallel assembly, and a C-terminal calmodulin-like (CaM-like) domain with 4 EF-hand motifs. Additionally to actin filaments, α -actinin binds multiple other cytoskeletal and signalling proteins. In striated muscle, the tightly defined numbers of α -actinin crosslinks between the antiparallel actin filaments at the Z-disk are organised by specific binding sites on the giant molecular blueprint of the sarcomere, titin. These titin Z-repeats contain a short, hydrophobic, α -actinin binding motif. To achieve ordered cytoskeletal assemblies, the binding properties of α -actinin must be tightly spatiotemporally regulated, in muscle α -actinin its actin and titin binding properties are regulated by phosphoinositide. Biochemical analyses led to propose previously that the α -actinin - titin interaction is regulated by an intramolecular mechanism, where the short sequence between the ABD and the rod interacts with the CaM-like domain in a pseudoligand complex, acting effectively as an intramolecular autoinhibitor. Here, we present the first complete crystallographic structure of sarcomeric human α -actinin complemented by small angle X-ray scattering data, electron-electron paramagnetic resonance, biochemical and in vivo cell biophysics studies of structure-informed mutants, which give insight into its molecular assembly and Z-disk architecture as well as into the mechanism of α -actinin function and regulation.

Keywords: muscle Z-disk, α -actinin regulation, PIP2, titin Z-repeat 7