Poster Presentation

MS45.P02

Study of 2'-macrolide phosphotransferase selectivity for different substrates

J. Blanchet ${ }^{1,2}$, D. Fong ${ }^{1,2}$, A. Berghuis ${ }^{1,2,3}$
${ }^{1}$ McGill University, Department of Biochemistry, Montreal, Canada, ${ }^{2}$ Groupe de Recherche Axé sur la Structure des Protéines (GRASP), ${ }^{3}$ McGill University, Department of Microbiology \& Immunology, Montreal, Canada

Macrolides are antibiotics that have been in use since the late 1950s to treat a wide range of bacterial infections (e.g. upper respiratory infections, skin and soft-tissue infections, stomach ulcers and some venereal diseases). The structure of these antibiotics contains a lactone ring of either 14,15 , or 16 members, with a variety of sugar moieties attached. Resistance to this class of antibiotics may result from the reaction carried out by macrolide phosphotransferases [MPHs]. MPHs belong to the family of antibiotic kinases which catalyzes the transfer of a phosphate group from a nucleoside triphosphate to a specific hydroxyl on the antibiotic. However, unlike most antibiotic kinases, MPHs utilize GTP as the phosphate donor. Specifically, 2'-macrolide phosphotransferase type I [MPH(2')-I] transfers the gamma-phosphate from GTP to the 2^{\prime}-hydroxyl of 14 - and 15 -membered ring macrolides. Crystal structure of the ternary complexes of $\mathrm{MPH}\left(2^{\prime}\right)-\mathrm{I}$ with both 14 - and 15 -membered lactone macrolides have been determined. To study the basis of substrate selectivity, we have generated mutations of several amino acid residues in the macrolidebinding pocket and examined the catalytic activities of these mutants on the different classes of macrolides, including those containing a 16-membered lactone. Furthermore, we will present kinetic studies of MPH(2')-I containing mutations in the nucleosidebinding pocket in order to study the mechanism for the enzyme's preference for GTP.

Keywords: Kinase, Antibiotic resistance, Macrolides

