Microsymposium

MS51.006

Improved low-resolution crystallographic refinement with Phenix and Rosetta

<u>N. Echols</u>¹, F. DiMaio², J. Headd¹, T. Terwilliger³, D. Baker^{2,4}, P. Adams^{1,5}

¹Physical Biosciences Division, Lawrence Berkeley National Laboratory, USA, ²Department of Biochemistry, University of Washington, USA, ³Bioscience Division, Los Alamos National Laboratory, USA, ⁴Howard Hughes Medical Institute, University of Washington, USA, ⁵Department of Bioengineering, University of California Berkeley, USA

Refinement of macromolecular structures against low-resolution crystallographic data is limited by the ability of current methods to arrive at a high-quality structure with realistic geometry. We have developed a new method for crystallographic refinement which combines the Rosetta sampling methodology and all atom energy function with likelihood-based reciprocal space refinement in Phenix, and find, on a test set of difficult low-resolution refinement cases, that models refined with the new method have significantly improved model geometry, and in most cases, lower free R factors and RMS deviation to the final model. Integration of the software packages additionally makes advanced sampling methods used in structure prediction and design available for crystallographic refinement with experimental data.

[1] DiMaio et al. (2013) Nature Methods 10:1102-4.

Keywords: Refinement, Protein structure prediction, Computational methods