Poster Presentation

MS53.P06

Structural studies on 14-3-3ζ: Compounds that target the dimer interface

<u>U. Dhagat</u>¹, J. Woodcock², C. Tiong¹, J. Holien¹, C. Coolen², S. Broughton¹, S. Pitson², T. Hughes³, A. Lopez², M. Parker¹ ¹St. Vincent's Institute of Medical Research, Biota Structural Biology Laboratory and Australian Cancer Research Foundation Rational Drug Discovery Centre, Fitzroy, Victoria, ²The Centre for Cancer Biology, Division of Human Immunology, SA Pathology, Adelaide, Australia, ³Centre for Cancer Biology, Department of Hematology, SA Pathology, Adelaide, Australia

14-3-3 proteins are a highly conserved family of dimeric phospho-serine binding proteins that modulate the functions of key cellular proteins involved in signaling. 14-3-3ζ plays a prominent role in signaling pathways leading to inhibition of apoptosis, sequestration of tumor suppressor proteins and activation of signalling pathways that promote growth. 14-3-3ζ expression is up-regulated in many human cancers and associated with enhanced survival of cancer cells. The significant association of 14-3-3ζ over expression with disease recurrence and chemo-resistance makes this protein an attractive candidate for anti-cancer therapy. The anti-apoptotic activity of 14-3-3ζ is entirely dependent on the dimeric state of the protein. Our studies have shown that 14-3-3ζ activity is regulated by sphingosine and other lipid analogs that render 14-3-3 phosphorylatable, disrupting its dimeric state thereby leading to apoptosis [1]. Structural studies and mutagenesis on 14-3-3ζ confirm that the dimeric state of 14-3-3ζ is stabilized by salt bridges that form across the dimer interface. Based on this we have carried out an in silico screen of a virtual library of drug-like small molecules to identify compounds that bind to the dimer interface of 14-3-3ζ. Candidate small molecules have been assessed for their ability to render 14-3-3ζ phosphorylatable in vitro and consequently we have identified a family of small molecules with 14-3-3ζ dimerdestabilizing properties. These small molecules induce apoptosis in leukemic cells by activating apoptotic mediators known to be regulated by dimeric 14-3-3. We have recently solved the crystal structure of 14-3-3ζ with one of our hit compounds bound at the dimer interface. Our results suggest that relatively small perturbations at the dimer interface, can destabilize the salt bridges that hold 14-3-3 dimers together, thus providing a novel approach to targeting 14-3-3 proteins for therapeutic benefit.

[1] Woodcock, J.M., Ma, Y., Coolen, C., et al., Cellular Signalling, 2010, 22, 1291-129.

Keywords: Therapeutic resistance, Anti-cancer drug development, oncogenes