Poster Presentation

MS55.P07

Size-dependent non-space filling atomic packing in metallic nanoparticles

<u>V. Doan-Nguyen</u>¹, S. Kimber², D. Pontoni², D. Reifsnyder³, B. Diroll³, X. Yang⁴, M. Miglierini⁵, C. Murray^{1,2}, S. Billinge^{4,6} ¹University of Pennsylvania, Department of Materials Science and Engineering, Philadelphia, USA, ²European Synchrotron Radiation Facility, Grenoble, France, ³University of Pennsylvania, Department of Chemistry, Philadelphia, USA, ⁴Columbia University, Department of Applied Physics and Applied Mathematics, New York, USA, ⁵Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Bratislava, Slovakia, ⁶Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Department, Upton, USA

Ni-Pd nanoparticles synthesized for CO catalysis are characterized by transmission electron microscopy and total X-ray scattering. The sizes of these nanoparticles can be tuned to size with great control over the monodispersity of the samples. The pair distribution functions of the reveal a local ordering within the highly disordered atomic structure within the nanoparticles. The PDFs show a size-dependent deviation from typical bulk face centered cubic (fcc) structure for these materials. The long-range isotropic disorder within these non-fcc nanoparticles can be fitted using an exponentially damped single-mode sine wave. Below a diameter of 5 nm, the Ni-Pd nanoparticles exhibit local ordering of atoms as found in typical icosahedral clusters. The transition from fcc to non-space filling atomic packing of icosahedral clusters in a nanoparticle is modeled to show the structural origin of the observed PDFs. Understanding this type of disorder can give insight into structure-property relations for applications in heterogeneous catalysis.

Keywords: total X-ray scattering, pair distribution functions, nanoparticles