Microsymposium

MS62.004

HR-TEM study of oxygen vacancy ordered Sr4+nMn4+nO10+3n compounds

L. Suescun ${ }^{1}$, J. Hadermann ${ }^{2}$, B. Dabrowski ${ }^{3}$
${ }^{1}$ Universidad de la República, Facultad de Química, Montevideo, Uruguay, ${ }^{2}$ University of Antwerp, EMAT, Antwerp, Belgium, ${ }^{3}$ Northern Illinois University, Department of Physics, DeKalb, IL, USA

The study of oxygen vacancy ordering in the LaxSr1-xMnOy system has shown a strong correlation between Mn formal valence and coordination to oxygen. The Mn2+ was found forming octahedra (Oc) and tetrahedra (Te), Mn3+ octahedra and pyramids (Py) and $\mathrm{Mn} 4+$ only octahedra. This tendency was derived from the presence of three kinds of vacancy orderings in the system. For $\mathrm{y}>2.5$ and the average $\mathrm{Mnm}+$ charge of $2<\mathrm{m}<3$ ($\mathrm{x}>0.5$), brownmillerite-type structures are found with $\mathrm{Mn} 2+/ 3+\mathrm{Oc}$ and $\mathrm{Mn} 2+\mathrm{Te}$. [1] For $3<m<4$ ($x<0.5$) structures of the homologous $\mathrm{Sr} 4+\mathrm{nMn4} 4 \mathrm{nO10}+3 \mathrm{n}-$ type series are found with $\mathrm{Mn} 3+\mathrm{Py}$ and $\mathrm{Mn} 3+/ 4+\mathrm{Oc}$. [2] For $\mathrm{y}<2.5$ and $2<\mathrm{m}<3$ ($\mathrm{x}<0.5$) a complex layered structure with OcTeOcOcTe'Oc ordering and step defects of $\mathrm{Mn} 3+\mathrm{Py}$ and $\mathrm{Mn} 2+\mathrm{Te}[3]$ is observed. Brownmillerite-type structure is absent in the Sr-rich region since mostly Mn3+ is present, which does not show tendency to form Te. Compounds of the $\mathrm{Sr} 4+\mathrm{nMn4} 4+\mathrm{nO} 10+3 \mathrm{n}$ series have been described as arrangements of groups of four Py and n Oc in symmetrical patterns. [2] This description did not elucidate the crystal chemistry reasons for specific pattern ($n=0,1$ and 3) since it neglected the coordination stabilization associated with oxygen vacancy, charge and orbital ordering observed in the structures.[2] Using highresolution transmission electron microscopy (HR-TEM) for SrMnOy with y values located between corresponding $n=0,1$ and 3 compositions, we have determined that the oxygen vacancy ordering directs the formation of these patterns. The structural patterns can be described as perovskites with lines of oxygen vacancies along [001] with nearest lines of vacancies in the cubic (310) plane. Successive (310) planes are n perovskite blocks (Oc) apart in the [010] direction. This ordering pattern allows the coherent growth of phases with different n at the sides of (310) plane as observed in grains of a sample of SrMnO2.668 where $n=1$ and $n=3$ phases grown coherently one at each side of the vacancy plane.
[1] P. Casey, D. Barker, M. Hayward, J. Sol. State Chem. 2006, 179, 1375-1382, [2] L. Suescun, B. Dabrowski, Acta Cryst. B, 2008, 64, 177-186, [3] E. Dixon, J. Hadermann, M. Hayward, Chem. Mater, 2012, 24, 1486-1495

Keywords: manganites, oxygen-vacancy ordering, HR-TEM

