Poster Presentation

MS67.P06

A novel layered aluminophosphate with corner-sharing AIO₆ chains

<u>F. Cámara¹</u>, L. Pastero¹, R. Arletti¹, M. Cagnoni²

¹Università di Torino, Dipartimento di Scienze della Terra, Torino, Italy, ²Università di Torino, Dipartimento di Chimica, Torino, Italy

The synthesis, Raman spectroscopy and crystal structure of a novel layered aluminophosphate is described. The new phase was derived by the sol-gel method starting from a modified low hydrothermal ALPO4-34 zeolite synthesis procedure[1]. The structure was solved by direct methods using single-crystal X-ray diffraction. The synthesized layered material, with composition [AIPO₃(OH)F(H₂O)]-(H₉C₄ON), crystallizes in the monoclinic space group P2₁/a with a = 9.2282(5) Å, b = 6.9152(4) Å, c = 14.4615(9) Å, β = 101.57(1)°. Layered aluminophosphates with AlO₆ polyhedra have been previously described [2], although in these compounds Al octahedral share edges. The novel compound has corner sharing AlO₄F(H₂O) chains along [010], where fluorine is at the shared apex, four oxygen atoms are shared with PO₄ tetrahedra and the fifth oxygen is a H₂O group. This kind of aluminophosphate chains is found in nature in tancoite [3]. Chains are linked along [100] through corner sharing with a PO₄ group of the adjacent chain plus hydrogen bonding of the H₂O group. Layers are stacked along c* through hydrogen bonding with a double layer of morpholine (H₉C₄ON) molecules. The chemical stability field of the novel materialis strongly dependent from the fluorine/aluminum ratio of the starting gel. At lower fluorine concentrations only ALPO4-34 and/or AIPO₄ (berlinite) are stable depending on the morpholine content. Crystals growth morphology depends on the supersaturation conditions of the starting gel: at low concentrations crystals are well developed hexagonal like plate shaped and are very thin. At higher concentrations they show a more elongated morphology. A treatment with H₂CO₃ leads to a complete morpholine removal, as shown by in situ Raman spectroscopy. Powder X-ray diffraction reveals that after morpholine extraction, the material diffract still coherently in two dimensions while a strong broadening is shown for basal planes.

[1] C. Wang, J. Wu, M. Hu, N. Li, N. Guan, S. Xiang J.Porous Mater 2011, 19, 5; 751-759, [2] R.W. Dorner, M. Deifallah, D.S. Coombes, et al. Chem. Mater. 2007, 19, 2261-2268., [3] Hawthorne F.C. Tschermaks Mineralogische und Petrographische Mitteilungen, 1983, 31 121-135.

Keywords: aluminophosphate, morpholine, crystal-structure