Poster Presentation

MS79.P05

In situ synchrotron powder diffraction for an ionic conductor transition

<u>H. Kasai</u>^{1,2}, K. Kato^{1,2}, A. Hori¹, M. Takata¹, S. Kitagawa^{1,3}, H. Tanaka⁴, H. Arikawa^{2,5}, T. Takeguchi^{2,5}, M. Sadakiyo^{2,6}, M. Yamauchi^{2,6} ¹*RIKEN SPring-8 Center, Hyogo, Japan, ²JST, CREST, Saitama, Japan, ³Kyoto University, Kyoto, Japan, ⁴Shimane University, Matsue, Japan, ⁵Iwate Univniversity, Morioka, Japan, ⁶Kyushu University, Fukuoka, Japan*

In situ synchrotron X-ray powder diffraction can be one of the most powerful probes to investigate the structure evolution by a chemical reaction thanks to simultaneity of data collection. It is not, however, with ease to produce a homogeneous chemical reaction in the limited spaces, which is essential to see an atomic-scale structure evolution. We have developed an in situ capillary cell for both high-temperature H₂ reduction and precise humidity control at the SPring-8 BL44B2. We successfully applied this in situ system to an electronic conductor LaSr₃Fe₃O₁₀, which is transformed into an ionic conductor by the two-step chemical treatments [1]. LaSr₃Fe₃O₁₀ has a triple-layer structure with a FeO₆ octahedral unit. One triple layer is bonded with another layer through van der Waals interaction. Structure refinements with in situ synchrotron powder diffraction data revealed that the H₂ reduction at 613 K produced in-plane oxygen vacancies, which resulted in suppression of the interlayer interaction. We found from charge density studies and Raman spectroscopy measurements that the following humidification intercalated H₂O and OH⁻ into the interlayer and intralayer, respectively. That means that H₂O plays a role for suppression of three-dimensional electronic conductivity, stabilizing the intercalation structure. On the other hand, the OH⁻ ions behave as carriers for ionic conductivity, maintaining the charge neutrality in the intralayer. Finally we determined the composition of the ionic conductor to be LaSr₃Fe₃O₁₀ (OH) $_{12}$ •2H₂O, which indicates a transformation of LaSr₃Fe₃O₁₀ into an OH⁻ ionic conductor. In the presentation, I will discuss the OH⁻ ionic conduction channel based on electrostatic potentials obtained from charge densities.

[1] T. Takeguchi et al., J. Am. Chem. Soc. 2013, 135, 11125-11130.

Keywords: In situ synchrotron X-ray powder diffraction, Layered oxide, Ionic conductor