Poster Presentation

MS90.P10

Perovskites in low dimensional multi-layer structure types

<u>S. Liu</u>¹, W. Miiller^{1,3}, Y. Liu², P. Blanchard¹, M. Avdeev³, B. Kennedy¹, C. Ling¹

¹The University of Sydney, School of Chemistry, New South Wales, Australia, ²Australian National University, Research School of Chemistry, Australian Capital Territory, Australia, ³ANSTO, The Bragg Institute, Menai, Australia

This study introduces examples of structure property relationships within the multi-layered Sillen-Aurivillius family (shown in Figure) and aims to investigate the effect of chemical doping and lattice matching effects. The first example involves doping 1/3 of the n = 3 ferroelectric perovskite layers with magnetic transition metal cations in Bi₅PbTi₃O₁₄Cl [1] with charge balancing by removing Pb²⁺ for Bi³⁺. A statistical 1:2 distribution of M³⁺ and Ti⁴⁺ across all three perovskite layers was found in Bi₆Ti₂MO₁₄Cl, M = Cr³⁺, Mn³⁺, Fe³⁺, resulting in highly strained structures (enhancing the ferroelectricity compared to Bi₅PbTi₃O₁₄Cl) and pronounced spin-glass behavior below T_{irr}(0) = 4.46 K. Ferroelectric transitions were observed at high temperature for each of the new compounds. Ferroelectric properties were also measured on Bi₆Ti₂FeO₁₄Cl using piezoresponse force microscopy showing hysteretic phase behavior. A new n = 2 Sillen-Aurivillius compound Bi₃Sr₂Nb₂O₁₁Br, based on Bi₃Pb₂Nb₂O₁₁Cl [2], was synthesized by simultaneously replacing Pb²⁺ with Sr²⁺ and Cl⁻ with Br⁻. Inter-layer mismatch prevented the formation of Bi₃Sr₂Nb₂O₁₁Cl and Bi₃Pb₂Nb₂O₁₁Br. Sr²⁺ doping reduces the impact of the stereochemically active 6s² lone pair found on Pb²⁺ and Bi³⁺, resulting in a stacking contraction in the lattice parameters by 1.22 % and an expansion of the a-b plane by 0.25 %, improving inter-layer compatibility with Br⁻. X-ray Absorption Near Edge Structure spectra analysis shows that the ferroelectric distortion of the B-site cation is less apparent in Bi₃Sr₂Nb₂O₁₁Br compared to Bi₃Pb₂Nb₂O₁₁Cl. Variable-temperature neutron diffraction data show no evidence for a ferroelectric distortion.

[1] A. Kusainova, S. Stefanovich, J. Irvine, et al, Journal of Materials Chemistry, 2002, 12, 3413–3418, [2] A. Kusainova, P. Lightfoot, W. Zhou, et al, Chemistry of Materials, 2001, 13, 4731-4737

