Poster Presentation

IT.P25

The Coherent X-ray Scattering Beamline at Taiwan Photon Source

J. Lin ${ }^{1}$, Y. Huang ${ }^{1}$, C. Chen ${ }^{1}$, U. Jeng ${ }^{1}$, C. Mou ${ }^{2}$, T. Lin ${ }^{3}$, H. Chen ${ }^{4}$
${ }^{1}$ National Synchrotron Radiation Research Center, Experiment Facility Division, Hsinchu, Taiwan, ${ }^{2}$ National Taiwan University, Department of Chemistry, Taipei, Taiwan, ${ }^{3}$ National Tsing Hua University, Department of Engineering and System Science, Hsinchu, Taiwan, ${ }^{4}$ National Tsing Hua University, Department of Chemical Engineering, Hsinchu, Taiwan

The coherent X -ray scattering beamline is one of the phase I beamlines designed for the Taiwan Photon Source, a new 3 GeV ring under construction at the National Synchrotron Radiation Research Center in Taiwan. By using a pair of 2 m -long in-vacuum undulators, this beamline will provide a highly coherent beam for X-ray photon correlation spectroscopy principally; moreover, it will share a part of beamtime for small-angle X-ray scattering (SAXS) experiments with similar setup of the beamline. The operating photon energy is designed within the range of $5-20 \mathrm{keV}$. In vertical direction, the beam spot size at sample position is $1 \mu \mathrm{~m}$ with focusing mirror and by using 1 D compound refractive lenses (CRLs) the beam spot size is $10 \mu \mathrm{~m}$. The horizontal beam spot size is in the range of 1 to $10 \mu \mathrm{~m}$ with a two-stage focusing design. The vertical and horizontal transverse coherence lengths of the $10 \mu \mathrm{~m} 2$ beam spot size at the photon energy of 5 KeV are 212 and $6 \mu \mathrm{~m}$ at sample position respectively. Beside XPCS the beamline configuration can cope with the requirements of most SAXS experiments, including anomalous measurements and micro-beam mapping. In addition, the increasing biological SAXS demand is also considered and the on-line fast performance liquid chromatography (FPLC) will be enclosed for biological users.

Keywords: coherent X-ray scattering

