Keywords: urea channel pH gating drug discovery ## MS6-O3 Membrane-bound pyrophosphatase: A primary proton pump Yuh-Ju Sun¹ 1. Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan ## email: yjsun@life.nthu.edu.tw Membrane-embedded pyrophosphatases (M-PPases) couple the generation and utilization of membrane potentials to catalyze the hydrolysis of pyrophosphate (PPi) and pump ion across the membranes. M-PPases, the proton/sodium ion pumps occur in all three domains of life, including H⁺-PPases in prokaryotes, bacteria, and plant, Na⁺-PPases in prokaryotes and H⁺/Na⁺-PPases in bacteria. The *Vigna radiata* H⁺-PPase (*Vr*H⁺-PPase) was isolated as a homodimeric form with 16 transmembrane helices each monomer. The crystal structure of *Vr*H⁺-PPase in complex with a substrate analogue, imidodiphosphate (IDP), was determined by MAD and MIRAS methods. *Vr*H⁺-PPas has a novel fold and pumping mechanism, different to the other primary pumps. The structural information of *Vr*H⁺-PPase provides the basis for understanding a unique proton translocation pathway as well as the ion selection among various M-PPases. **Keywords:** pyrophosphatases, proton/sodium ion pump, Vigna radiata,