Membrane-bound pyrophosphatase: A primary proton pump

Yuh-Ju Sun

1. Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan

date

e-mail: yjsun@life.nthu.edu.tw

Membrane-embedded pyrophosphatases (M-PPases) couple the generation and utilization of membrane potentials to catalyze the hydrolysis of pyrophosphate (PPi) and pump ion across the membranes. M-PPases, the proton/sodium ion pumps occur in all three domains of life, including H⁺-PPases in prokaryotes, bacteria, and plant, Na⁺-PPases in prokaryotes and H⁺/Na⁺-PPases in bacteria. The Vigna radiata H⁺-PPase (VrH⁺-PPase) was isolated as a homodimeric form with 16 transmembrane helices each monomer. The crystal structure of VrH⁺-PPase in complex with a substrate analogue, imidodiphosphate (IDP), was determined by MAD and MIRAS methods. VrH⁺-PPases has a novel fold and pumping mechanism, different to the other primary pumps. The structural information of VrH⁺-PPase provides the basis for understanding a unique proton translocation pathway as well as the ion selection among various M-PPases.

Keywords: pyrophosphatases, proton/sodium ion pump, Vigna radiata,