Direct observation of the excited state structure of a Ag(I)-Cu(I) complex

Radosław Kamiński1,2, Katarzyna N. Jarzembaska1,2, Bertrand Fournier1, Elzbieta Trzop2, Jesse D. Sokolow2, Yang Chen2, Robert Henning1, Philip Coppens2

1. Czochralski Laboratory of Advanced Crystal Engineering, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Zwirki i Wierzbna 101, 02-089 Warsaw, Poland
2. Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000, USA
3. The Consortium for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA

email: rkmotysi@chem.uw.edu.pl

Heterodentate coordination complexes have been extensively studied because of their rich electronic and luminescent properties, which are of importance in the design of molecular devices. The short metal-metal contacts found in such complexes determine the nature of the lowest lying emissive states, and must be explored in order to understand their physical properties. Recent advances in time-resolved (TR) synchrotron techniques supported by specific data collection strategies and data processing procedures allow for elucidation of molecular excited state geometries in the solid state. The approach has been so far successfully applied to several high-quality Laue-data sets collected at the 14-ID BioCARS beamline at the Advanced Photon Source.2

In this contribution we present synchrotron TR experiment results obtained for a new solvent-free crystal form of a model complex containing Ag(I) and Cu(I) (Ag2CuL2, L = 2-diphenylphosphino-3-methylindole ligand). This system exhibits red solid-state luminescence with a lifetime of about 1 μs. This is one of the shortest-lived excited states we have studied so far with the Laue technique. The relatively short lifetime goes along with significant structural changes observed upon irradiation, such as, the Ag...Ag distance shortening of about 0.26 Å for the excited state. The results clearly show strengthening of the Ag...Ag interactions suggesting a bond formation upon excitation.2 The photocystallographic findings are supported by spectroscopic measurements and quantum computations. The results confirm the triplet nature of the emissive state originating mainly from a ligand-to-metal charge transfer.

Research was funded by the NSF (CHE1213223). BioCARS Sector 14 is supported by the NIH, National Center for Research Resources (RR007707). The APS is funded by the U.S. DoE, Office of Basic Energy Sciences (W-31-109-ENG-38). KNJ is supported by the Polish Ministry of Science and Higher Education through the “Mobility Plus” program.

References

Keywords: photocrystallography, time-resolved Laue diffraction, argentophilic interactions