MS43-05 Growth and structural characterization of thin oriented \(\text{Co}_3\text{O}_4\) (111) films prepared by decomposition of layered cobaltates

Radomír Kuzel¹, Josef Bursík², Miroslav Soroka², Filip Miká³

1. Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
2. Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Hasičes-Rez 1001, Czech Republic
3. Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, v.v.i., Královořopolska 147, 612 64 Brno, Czech Republic

email: kuzel@karlov.mff.cuni.cz

The formation and structure of highly (111)-oriented \(\text{Co}_3\text{O}_4\) films prepared by a novel procedure from weakly (001)-oriented \(\text{Na}_x\text{Co}_y\text{O}_z\) were studied by XRD. We have found that (111)-oriented \(\text{Co}_3\text{O}_4\) thin films with (pseudo) epitaxial relation to \(\alpha\)-\(\text{Al}_2\text{O}_3\) (001) substrate can be successfully prepared by chemical solution deposition method through the transformation of (001)-oriented \(\text{Na}_x\text{Co}_y\text{O}_z\) thin films under optimised annealing conditions. The best results were obtained with the first annealing done at 700 °C for 60 minutes (crystallization of \(\gamma\)-\(\text{Na}_x\text{Co}_y\text{O}_z\)) and the second annealing at 900 °C enabling the transformation of \(\text{Na}_x\text{Co}_y\text{O}_z\) into \(\text{Co}_3\text{O}_4\) phase. The degree of preferred orientation in \(\text{Co}_3\text{O}_4\) as determined by \(\varphi\) scans and pole figure measurements depended on the Na content in the starting \(\text{Na}_x\text{Co}_y\text{O}_z\) phase. The content should fall within the region where thermodynamically stable \(\text{Na}_x\text{Co}_y\text{O}_z\) phases exist (i.e., 0.3 ≤ \(x\) ≤ 1). The highest volume fraction of well-oriented spinel phase was found for the films prepared from precursor solution with \(x\) ~ 0.5. The number of maxima observed in \(\varphi\) scans of spinel phase indicated the existence of in-plane twins since twice more maxima were detected than it would correspond to the multiplicities of the measured lattice planes. Hence the scans suggest the occurrence of two types of growth domains with the same out-of-plane [111] orientation, but with their [001] and [110] axes rotated by 180° into mirror directions. Such twinning is observed for other (hhh)-oriented spinel films on substrates with dissimilar structures. Relatively higher spread (10 °) of in-plane orientation may be a consequence of weaker interfacial bond between film and substrate because the annealing temperatures used were not sufficient to evoke high crystallization and densification of oxide network. Surface morphology of the films was investigated using electron microscopy and atomic force microscopy. The microstructure of \(\text{Na}_x\text{Co}_y\text{O}_z\) film was formed by platelet-like grains with the longitudinal size of approximately 500-700 nm. The grains piled up into assembly with pronounced longitudinal texture parallel to the interface. The transformation of (001) oriented \(\text{Na}_x\text{Co}_y\text{O}_z\) structure into (111)-oriented \(\text{Co}_3\text{O}_4\) structure manifested itself in change to microstructure of coarse equiaxed grains with the average size comparable to the film thickness and forming near-columnar microstructure.

Supported by the Grant Agency of the Czech Republic no. 14-18392S.

Keywords: thin films, chemical solution deposition, cobalt oxides

MS44. New applications of old algorithms in crystallography

Chairs: George Sheldrick, Isabel Uson

MS44-01 \(R_{\text{free}}\): a dinosaur marked for extinction?

Dusan Turk¹², Jure Praznikar¹²³

1. Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
2. Centre of excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
3. Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaska 8, 6000 Koper, Slovenia.

email: dusan.turk@ijs.si

In the early 90s in the absence of rigorous geometric restraints the structure validation was first introduced in the reciprocal space with \(R\)-free. Nowadays, however, over fitting can be controlled in real space by the rigorous use of geometric restraints and validation tools. In refinement the practice was established that the deviations from ideal geometry are defined as a target used to scale crystallographic energy terms. Hence, over fitting of models which lead to severe deviations from ideal geometry is not really possible anymore. Hand in hand with the progress of tools delivering better models also the amount of data used for the TEST set was gradually decreasing from the initial 10% and more to 5% and less. Its portion is now practically limited by the request for statistical reliability of the Maximum Likelihood (ML) Cross Validation parameters. The use of the TEST set concept has its limitations: it does not allow the use of all data in refinement and map calculations, the presence of NCS makes it impossible to decouple the independence of TEST set reflections from the rest of the data, and the exchange of the TEST set can result in a considerably different gap between \(R\)work and \(R\)free. To overcome the limitations of the \(R\)free concept we developed an approach that uses the WORK set to calculate the phase error estimates in the ML refinement from simulating the model errors via the random displacement of atomic coordinates. We call it ML Free Kick refinement as it uses the ML formulation of target function and is based on the idea to free the model from the model bias imposed by the chemical energy restraints used in refinement. This approach of calculation of error estimates is superior to the cross validation approach: it reduces the phase error and increases the accuracy of