MS14-P2 The crystal structure of a davidite related ternary oxide La_{1.78}Mn_{6.6}Ti_{13.62}O₃₈

Amalija Golobič¹, Maja Vidmar¹, Srečo D. Škapin², Danilo Suvorov², Anton Meden¹

1. University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia 2. Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

email: amalija.golobic@fkkt.uni-lj.si

The title compound is a new ternary oxide in the La₂O₃-Mn₂O₃-TiO₂ pseudo-ternary system. It was synthesized by wet precipitation technique using manganese (III) oxide and lanthanum nitrate diluted in citric acid and the water solution of titanium (IV) isopropoxide. The product was calcined at 750°C in air and sintered at 1100°C for 20 h. After the heat treatment, the sample was cooled by quenching to room temperature. The formula of the obtained single phase product is La_{1.78}Mn_{6.6}Ti_{13.62}O₃₈ which is in accordance to the synthetic ratio of metals and supported by scanning electron microscopy (SEM) using wavelength-dispersive (WDS) and energy-dispersive spectroscopy (EDS). The compound is isostructural with naturally occurring crichtonite group minerals, which crystallize in trigonal system in R-3 space group. It conforms to the general formulae $AM_{21}O_{38}$, where A is occupied by a large cation: Ca, Sr, xRb, K, Na and rare-earth elements – RE. The minerals with RE on A site are called davidites.

The X-ray powder diffraction pattern was collected on a PANalytical X'Pert PRO MPD diffractometer in reflection geometry using CuK_{α_1} in range from 10° to 120° 2θ . Crystal structure was determined using Rietveld method incorporated in TOPAS-Academic program method incorporated in 10PAS-Academic program taking a structure of Ca₂Zn₄Ti₁₆O₃₈ [1] as a starting model. The Ca²⁺ on cuboctahedral site *A*, surrounded by 12 O²⁻ anions, is replaced by La³⁺. The Ca²⁺ on octahedral *M*(1) site is replaced by La³⁺ and Mn²⁺ (La/Mn)2. Mn²⁺ is additionally disposed over tetrahedral site *M*(2) (instead of Zn^{2+} , Mn3), while the rest of Mn^{2+} is sharing the octahedral M(3) site with Mn^{3+} and Ti^{4+} (Ti/Mn)1. Sites M(4) and M(5) are fully occupied by Ti^{4+} (Ti2, Ti3). Sites A and M(1) lie on 3-fold rotoinversion axis, M(2) lies on 3-fold axis, M(3), M(4) and M(5) lie on general positions. a=9.28107(7) Å, $\alpha=68.4560(5)^{\circ}$, V=666.237(15) Å³, 34 structural and 9 profile parameters, $R_p=2.82$, $R_{wp}=3.56$, $R_p=16.80$, $R_{wp}=12.75$. [1] Gatehouse, B. & Grey, I.. *J. Solid State Chem.* **46**,

151-155 (1983).

Financial support of the Ministry of Education, Science and Sport of the Republic of Slovenia is gratefully acknowledged (grants P1-0175, P2-0091, MR-33158).

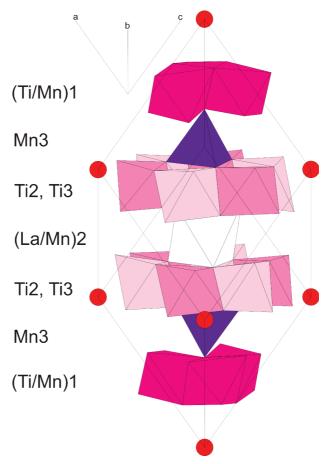


Figure 1. Unit cell of title compound extended to complete polyhedra.

Keywords: powder diffraction, ternary oxide, ceramics, davidite, Rietveld refinement,