Effective transport of electronic excitation energy through zeolite channels: a structural study

Lara Gigli¹, Rossella Arletti¹, Jenny G. Vitillo², Gianmario Martra³, Gabriele Alberto³, Gloria Tabacchi³, Ettore Fois², Simona Quartieri³, Giovanna Vezzalini³

1. Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, 10125-Torino, Italy
2. Dipartimento di Scienze ed Alta Tecnologia, Università degli Studi dell’Insubria, Via Lucini 3, 22100-Colle, Italy
3. Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125-Torino, Italy
4. Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres 3, 98166-Messina, Italy
5. Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 41125-Modena, Italy

email: lara.gigli@unito.it

The development of an artificial system able to mimic the green plants (natural photosynthesis) has been a long-standing challenge. Artificial antenna systems can be realized once several organized chromophores are able to absorb the incident light and to channel the excitation energy to a common acceptor component [1-3]. The properties of the systems depend on the molecular packing inside the channels. Artificial antenna can be built by incorporating suitable guests into the one-dimensional channels of zeolite L (ZL). In this work we present a detailed structural study of two hybrid systems in which dyes (fluorenone and thionine) are encapsulated in zeolite L channels. These two molecules were chosen since it has been demonstrated that a "two–dyes antenna system" - in which fluorenone (FL) (donor molecule) and thionine (Th) (acceptor molecule) are organized in Zeolite L porosities - shows remarkable optical properties. Due to the impossibility of studying, from the structural point of view a “two–dyes systems”, two “one-dye” hybrids (ZL/fluorenone and ZL/thionine) were firstly synthesized and characterized [4]. The results of thermogravimetric, IR, and X-ray structural refinements carried out for the one-dye ZL/FL and ZL/Th systems established that 1.5 molecules of FL and 0.3 molecules of Th per unit cell is the maximum loading, respectively. The FL carbonyl group strong interact with a K⁺ of the ZL. On the other hand, short distances between the carbon, sulfur and nitrogen atoms of Th and two water molecule sites, in turn at bond distance from the oxygen atoms of the main channel, suggested a water-mediated Th-ZL interactions. The energy transfer from excited FL molecules, forming the non-covalent nanoladder in the ZL channel, and Th, deposited on the external surface of ZL particles, is currently under investigation.

The authors acknowledge the Italian Ministry of Education, MIUR-Project: “Futuro in Ricerca 2012 - ImpACT- RRFR12CLQD”.

References