MS15-P7 Synthesis, molecular structure and spectroscopic characterization of N-(4-nitrophenyl)-2, 2-dibenzoylacetamide (NPDA): with experimental (X-Ray, FT-IR, 1H and 13C-NMR and UV-Vis) techniques and theoretical calculations

Serife Yalcin 1, Serife P. YALCIN 1, Umit Ceylan 2, Ahmet O. Saroğlu 1, Mehmet Sönmez 3, Muhittin Aygün 3

1. Central Laboratory, Osmanbay Campus, Harran University, 63190 Şanlıurfa, TURKEY
2. Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
3. Department of Chemistry, Faculty of arts and Sciences, Gaziantepl University, 27310, Gaziantepl, TURKEY
4. Department of Physics, Faculty of arts and Sciences, Dokuz Eylül University, Bucta, 35150, Izmir, TURKEY

email: serifeyalcin@harran.edu.tr

The title compound, C$_{16}$H$_{11}$N$_3$O$_5$ was synthesized and characterized by experimental techniques (FT-IR, 1H-NMR, 13C-NMR, UV-Vis and X-Ray single crystal determination) and theoretical calculations. According to X-Ray diffraction results, the title compound crystallizes in the monoclinic space group P1$_2$/c with a = 10.023 (2) Å, b = 21.587 (5) Å, c = 9.401 (2) Å and β = 110.29 (3)$^\circ$, and Z = 4 in the unit cell. The molecular geometry, vibrational frequencies, molecular electrostatic potential (MEP), thermodynamic properties, the dipole moments, HOMO-LUMO energy has been calculated by using the Density Functional Theory (DFT) method with 6-311G(d,p) and 6-311+G(d,p) basis sets. 1H and 13C-NMR chemical shifts show good agreement with experimental values.

Figure 1. The molecular structure of the title compound.

Keywords: X-ray diffraction; Density functional theory; Quantum chemical calculations; Carboxamide; Characterization.

MS15-P8 Unusual thermal polymorphic transformation I-43d\leftrightarrow P2$_1$/a \leftrightarrow Ia-3d of KBSi$_2$O$_6$

Maria G. Krzhizhanovskaya 1, Rimma S. Bubnova 1, Elena S. Derkacheva 2, Wulf Depmeier 1, Stanislav K. Filatov 1

1. Saint Petersburg State University, University Emb., 7/9, St. Petersburg, 199034, Russia
2. Grebenschikov Institute of Silicate Chemistry of the Russian Academy of Sciences, Adm. Makarov Emb., 2, St. Petersburg, 199034, Russia
3. Dept. of Earth Sciences, University of Kiel, Germany

e-mail: krzhizhanovskaya@mail.ru

Up to now three topologically identical modifications of KBSi$_2$O$_6$ with the 3D tetrahedral framework of the ANA type [Zeolite DATABASE] are known: cubic I-43d [Ihara, Kamei 1980; Mikkol et al 1992], cubic Ia-3d [Martucci et al 2011] and monoclinic P2$_1$/a [Belokoneva et al 2010]. In present study the polycrystalline sample of cubic KBSi$_2$O$_6$ was obtained by solid-state reaction from stoichiometric mixture. The monoclinic modification of KBSi$_2$O$_6$ (P2$_1$/a) was prepared by hydrothermal synthesis at 600 °C and 5 kBar. The thermal behavior of both modifications upon heating in air was studied by high-temperature X-ray powder diffractometry (HTXRD) and differential scanning calorimetry (DSC) in the temperature range 25–1100 °C. In accord to both HTXRD and DSC results the cubic modification undergoes reversible thermal transformations: I-43d\leftrightarrow P2$_1$/a \leftrightarrow Ia-3d. The temperature dependence looks complicated. The jumps of values of cell parameters are registered near the point of both I-43d\leftrightarrow P2$_1$/a and P2$_1$/a \leftrightarrow Ia-3d transformations. The volume thermal expansion coefficients are about 70, 50 and 30×10$^{-6}$°C$^{-1}$ for I-43d, P2$_1$/a and Ia-3d phases, respectively. The HTXRD data on the transition temperatures are in a good agreement with DSC data both on heating and cooling. Taking into account well known tendency of substances to increase their symmetry on heating, polymorphic transformation cubic-monoclinic-cubic looks unusual, P2$_1$/a hydrothermal phase transforms reversibly into Ia-3d polymorph. Both modifications decompose above 1000 °C with SiO$_2$ formation. In [Martucci et al 2011] the direct reversible transformation I-43d\leftrightarrowIa-3d of slightly hydrated KBSi$_2$O$_6$ has been studied by Rietveld refinement from synchrotron data. Our experiment showed that the addition of Na or Rb to KBSi$_2$O$_6$ stabilized the direct transformation I-43d\leftrightarrowIa-3d as well. In [Millini et al 1993] non-stoichiometrical KBSi$_2$O$_6$ enriched in SiO$_2$ was obtained by hydrothermal synthesis with Ia-3d symmetry. It seems that even insignificant variations in composition could lead to stabilization of different modifications of boroleucite structure.

Acknowledgements. The work is supported by Russian Foundation for Basic Research 15-03-06354. XRD study is performed at X-ray Diffraction Centre of Saint Petersburg State University.

Keywords: borosilicate, leucite, high-temperature transformation.