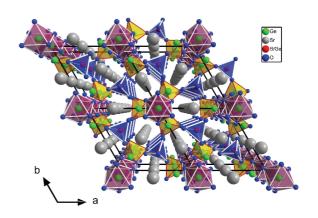
## MS15-P31 High-temperature synthesis of the new strontium

borogermanate  $Sr_{3-x/2}B_{2-x}Ge_{4+x}O_{14}$  (x = 0.32)

Benedikt Petermueller<sup>1</sup>, Huppertz Hubert<sup>1</sup>

1. Institute of General, Inorganic and Theoretical Chemistry, Leopold-Franzens-University Innsbruck, A-6020 Innsbruck, Austria


## email: Benedikt.Petermueller@student.uibk.ac.at

Benedikt Petermüller<sup>a\*</sup>, Hubert Huppertz<sup>a</sup>

<sup>a</sup>Institute of General, Inorganic and Theoretical Chemistry, Leopold-Franzens-University Innsbruck, A-6020 Innsbruck, Austria

The strontium borogermanate Sr<sub>3-x/2</sub>B<sub>2-x</sub>Ge<sub>4+x</sub>O<sub>14</sub> (x = 0.32) <sup>[1]</sup> (Figure 1) was synthesized by high-temperature solid-state reaction of SrO, GeO<sub>2</sub>, and H<sub>3</sub>BO<sub>3</sub> in a NaF/KF flux system using platinum crucibles. The structure determination revealed that Sr<sub>3-x/2</sub>B<sub>2-x</sub>Ge<sub>4-x</sub>O<sub>1</sub>(x = 0.32) crystallizes in the trigonal space group *P*321 (No. 150) with the parameters *a* = 800.7(2) and *c* = 488.8(2) pm, with *R*1 = 0.0281, *wR*2 = 0.0671 (all data), and Z = 1. The crystal structure of Sr<sub>3-x/2</sub>B<sub>2</sub>Ge<sub>4-x</sub>O<sub>14</sub> (x = 0.32) consists of distorted SrO<sub>8</sub> cubes, GeO<sub>5</sub> octahedra, GeO<sub>4</sub> tetrahedra, and BO<sub>4</sub> tetrahedra. In addition to the structural investigations, Raman and IR-spectroscopic investigations were carried out. Taking into account that Sr<sub>3-x/2</sub>B<sub>2</sub>Ge<sub>4-x/2</sub>O<sub>14</sub> (x = 0.32) is isotypic to Ca<sub>3</sub>Ga<sub>2</sub>Ge<sub>4</sub>O<sub>14</sub> (x) possessing the general composition A<sub>3</sub>XY<sub>3</sub>Z<sub>2</sub>O<sub>14</sub> (y) possessing the general composition A<sub>3</sub>XY<sub>3</sub>Z<sub>2</sub>O<sub>14</sub> (y) possessing their piezoelectric properties because nearly all 140 known member crystallize in the trigonal noncentrosymmetric space group *P*321. <sup>[5, 6]</sup> As several members of the langasite family are already promising piezoelectric materials, the herein reported compound leads to a wider range of compositions which might lead to better piezoelectric properties of potential materials.

- [1] B. Petermüller, L. L. Petschnig, K. Wurst, G. Heymann, H. Huppertz, *Inorg. Chem.* 53, 9722 (2014)
- [2] E. L. Belokoneva, M. A. Simonov, A. V. Butashin, B. V. Mill, N. V. Belov, *Dokl. Akad. Nauk SSSR* 255, 1099 (1980)
- [3] E. L. Belokoneva, N. V. Belov, *Dokl. Akad. Nauk SSSR* 260, 1363 (1981)
- [4] B. V. Mill, E. L. Belokoneva, T. Fukuda, *Russ. J. Inorg. Chem.* 43, 1168 (1998)
- [5] B. V. Mill, B.A. Maksimov, Yu. V. Pisarevskii,
  N. P. Danilova, A. Pavlovska, S. Werner, J.
  Schneider, Kristallografiya 49, 60 (2004)
- [6] H. Ohsato, T. Iwataki, H. Morikoshi, *Trans. Electr. Electron Mater.* 13, 51 (2012)



**Figure 1.** Crystal structure of  $Sr_{3,x/2}B_{2,x}Ge_{4+x}O_{14}$  (x = 0.32) down [001] exhibiting channels created through the  $GeO_4$ -B/ $GeO_4$  network an occupied by Sr atoms (grey)

Keywords: Piezoelectricity, Langasite, Synthesis