MS15-P35 Relationship between the composition, structural parameters and properties of single-crystal KDP with nano-titania

Galina M. Kuzmicheva¹, Olesya I. Timaeva¹, Elena N. Domoroshchina¹, Vadim V. Grebenev², Anna V. Kosinova³

- 1. Department of Materials Science and Technology of Functional Materials and Structures, State University of Fine Chemical Technologies of M. V. Lomonosov, 119571, Moscow, Russia
- 2. Institute of Crystallography, Russian Academy of Sciences, 119333, Moscow, Russia
- 3. Institute for Single Crystals NAS of Ukraine, 61001, 60 Lenin Ave. Kharkov, Ukraine

email: galina_kuzmicheva@list.ru

Development perspectives for new nonlinear optical elements (NLO) based on combinations of inorganic matrix with various inorganic functional nanoparticles are discussed now. The presence of nano-TiO₂ in a crystalline matrix of KDP (KH₂PO₄) leads to increase the magnitude of cubic nonlinear susceptibility, changes the sign of the nonlinear refractive response and increases the efficiency of second harmonic generation of composite system KDP:TiO₂ (V.Ya. Gayvoronsky et al. 2013). The aim of this paper is to establish the relationship between composition, structural parameters and dielectric composition, structural parameters properties of composites KDP:TiO₂.

X-ray diffraction study of the initial samples with nano-TiO₂ (phase analysis, the sizes of coherent scattering regions - D) indicated the presence of anatase (sample 1; D = 50 (4) Å) and η -TiO₂ (sample 3; D = 38(2) Å) (sulfate method) and anatase (sample 2; D = 150 (8) Å) (chloride method) at them. Pure KDP crystals and KDP:TiO₂ (composites I, II, III with incorporated TiO₂ nanoparticles from the samples 1,2 and correspondingly) were grown by the temperature reduction method onto point seed. According to X-ray microanalysis, the sulfur content is greater in the sample 3 (4.37-7.58 wt %) and composite III (11.99 wt.%) as compared with sample 1 (2.17-3.73 wt %) and composite I (4.54 wt..%). The samples from growth sectors {100} and {101} of KDP and KDP:TiO₂ crystals were cut for the investigation.

Analysis of the results of X-ray single crystal study revealed the most significant structural changes in the composite III ({100}): a very small value of O-H distance and a short distance P-O compared with the same distances in the structures of KDP and composites I, II, vacancies in the K^{1+} sites and located ions Ti^{4+} in the vicinity of the K^{1+} positions. It was established that the vicinity of the K² positions. It was established that the general composition of the composite III ({100}) can be described as $(K_{0.950(1)}[]_{0.050})(Ti_{0.052(2)i})(H^{1+}_{2-x}[]_{x})[(PO_{4})^{3-}_{y}(SO_{4}^{2-})_{1-y}]([]_{-vacancy})$. It was established that the magnitude of dielectric permittivity (ϵ ') for KDP and KDP:TiO₂ is different depending on the growth sectors (ϵ '{101}> ϵ '{100}). It is

greater for composite II in comparison with composite I and composite III ({100}) has the smallest value of ε' , which correlates with the interatomic distance O-H.

This work was carried out as a part of a state task of the Ministry of Education and Science of Russian Federation (№ 4.745.2014/K; 2014-2016).

Keywords: KDP: nano-TiO2, structure, dielectric properties

MS15-P36 Absolute structure of (E)-2,2'-[3-(2-Nitrophenyl)prop-2-ene-1,1-diyl] bis (3-hydroxy-5,5-dimethylcyclohex-2-en-1-one)

Joo Hwan Cha¹, Jae Kyun Lee², Yong Seo Cho²

1. Advanced Analysis Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul, South Korea 2. Center for Neuro-Medicine, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul, South Korea

email: jhcha@kist.re.kr

Herewith we present the crystal structure of (E)-2,2'-[3-(2-nitrophenyl)prop-2-ene-1,1-diyl] bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one) (A)[1], (E)-2,2'-[3-(4-nitrophenyl)prop-2-ene-1,1-diyl] bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one) (**B**)[2]. In the compound (**A**), C25H29NO6, each of the cyclohexenone rings adopts a half-chair conformation. Each of the pairs of hydroxy and carbonyl O atoms are oriented to allow for the formation of intramolecular O—H---O hydrogen bonds, which are typical of xanthene derivatives. The nitro group is rotationally disordered over two orientations in a 0.544 (6):0.456 (6) ratio. In the crystal, weak intermolecular C—H---O hydrogen bonds link molecules into layers parallel to the ab plane. The compound (B), each of the cyclohexenone rings adopts a half-chair conformation. The hydroxy and carbonyl O atoms face each other and are oriented to allow for the formation of two intramolecular O-H---O hydrogen bonds. In the crystal, weak C—H---O hydrogen bonds are formed between molecules, generating a two-dimensional supramolecular structure.

[1] Cha, J, H., Kim, Y. H., Min, S. J., Cho, Y. S. & Lee, J. K. (2011). Acta Cryst. E67, o3153.

[2] Cha, J, H., Cho, Y. S., Lee, J. K., Park, J. H. & Sato, H. (2012). Acta Cryst. E68, o2510.

Keywords: X-ray crystallography of organic compounds; xanthene; absolute structure determination