High-pressure phase transitions in ordered and disordered ternary tetradyomite Bi$_2$Te$_2$Se

Morten B. Nielsen1, Paraskevas Parisiades2, Solveig R. Madsen1, Martin Bremholm3

1. Center for Materials Crystallography (CMC), Department of Chemistry and iNANO, Aarhus University, Aarhus, Denmark
2. European Synchrotron Radiation Facility (ESRF), Beamline ID27, Grenoble, France
3. Department of Chemistry, Technische Universität Berlin, Berlin, Germany

email: mbnielsen@chem.au.dk

We report studies of pressure-induced phase transitions of ordered and disordered ternary tetradyomite Bi$_2$Te$_2$Se by synchrotron powder x-ray diffraction in diamond anvil cells for pressures up to 57 and 48 GPa, respectively. The first sample (SB) was prepared from a single crystal with ordered Se/Te sites (fig. 1a) while the second sample (Q) was prepared from a quenched melt resulting in tetradyomite with disordered Se/Te. This allowed for an investigation of the effect of disorder on the phase transitions and the equation of states (EoS) of the tetradyomite α-phase.

Fitting the 3rd order Birch-Murnaghan EoS to the tetradyomite α-phases yielded bulk moduli K$_0$ of 36.7(9) and 40.3(19) GPa and K’ of 6.0(3) and 4.8(6) for the SB and Q samples, respectively. An electronic topological transition was observed in both samples at pressures of 3.8 and 2.6 GPa, respectively. This was followed by a transition near 10 GPa to a phase that is isostructural with the β-phase of Bi$_2$Te$_3$ (fig. 1b). The Se/Te ordering only affected the transition pressure to a small extent.

A cubic phase that resembles the δ-phase observed in high-pressure studies of Bi$_2$Te$_3$ (fig. 1c)1,2 appeared at 16-19 GPa, but the ternary composition lead to a more complex structure. The presence of a low angle diffraction peak in the δ-phase demonstrated that the true structure is not simply body-centered cubic. In this way the samples resemble Bi$_2$Se$_3$ where Bi and Se show a high degree of ordering, but the proposed structures in literature$^{1-5}$ of δ-Bi$_2$Se$_3$ did not fully describe the data for δ-Bi$_2$Te$_2$Se. The nature of the partial ordering of the Se/Te in the high-pressure δ-Bi$_2$Te$_2$Se is discussed through various short-range ordering models.

References: