MS20-P2 High-pressure phase transitions in ordered and disordered ternary tetradymite Bi₂Te₂Se

Morten B. Nielsen¹, Paraskevas Parisiades², Solveig R. Madsen¹,
Martin Bremholm¹

- 1. Center for Materials Crystallography (CMC), Department of Chemistry and iNANO, Aarhus University, Aarhus, Denmark
- 2. European Synchrotron Radiation Facility (ESRF), Beamline ID27, Grenoble, France

email: mbnielsen@chem.au.dk

We report studies of pressure-induced phase transitions of ordered and disordered ternary tetradymite $\mathrm{Bi}_2\mathrm{Te}_2\mathrm{Se}$ by synchrotron powder x-ray diffraction in diamond anvil cells for pressures up to 57 and 48 GPa, respectively. The first sample (SB) was prepared from a single crystal with ordered Se/Te sites (fig. 1a) while the second sample (Q) was prepared from a quenched melt resulting in tetradymite with disordered Se/Te. This allowed for an investigation of the effect of disorder on the phase transitions and the equation of states (EoS) of the tetradymite α -phase.

Fitting the 3^{rd} order Birch-Murnaghan EoS to the tetradymite α -phases yielded bulk moduli K_0 of 36.7(9) and 40.3(19) GPa and K' of 6.0(3) and 4.8(6) for the SB and Q samples, respectively. An electronic topological transition was observed in both samples at pressures of 3.8 and 2.6 GPa, respectively. This was followed by a transition near 10 GPa to a phase that is isostructural with the β -phase of Bi_2Te_3 (fig. 1b). The Se/Te ordering only affected the transition pressure to a small extent.

A cubic phase that resembles the δ -phase observed in high-pressure studies of Bi₂Te₃ (fig. 1c)^{1,2} appeared at 16-19 GPa, but the ternary composition lead to a more complex structure. The presence of a low angle diffraction peak in the δ -phase demonstrated that the true structure is not simply body-centered cubic. In this way the samples resemble Bi₂Se₃ where Bi and Se show a high degree of ordering, but the proposed structures in literature³⁻⁵ of δ -Bi₂Se₃ did not fully describe the data for δ -Bi₂Te₂Se. The nature of the partial ordering of the Se/Te in the high-pressure δ -Bi₂Te₂Se is discussed through various short-range ordering models.

References:

- [1] L. Zhu et al., Phys. Rev. Lett. **106** (**14**), 145501 (2011)
- [2] M. Einaga *et al.*, *Phys. Rev. B*, **83** (9), 092102 (2011); S. J. Zhang *et al.*, *J. Appl. Phys.* **111** (11), 112630 (2012)
- [3] J. G. Zhao et al., J. Phys.: Condens. Matter 25 (12), 125602 (2013)
- [4] G. T. Liu et al., J. Phys. Chem. C 117 (19), 10045 (2013)
- [5] R. Vilaplana *et al.*, *Phys. Rev. B* **84** (**18**), 184110 (2011)

Figure 1. a) α -phase tetradymite Bi_2Te_2Se . b) β -phase Bi_2Te_3 . c) δ -phase Bi_2Te_3 .

Keywords: Tetradymite, Bi2Te2Se, Substitutional Alloy