The substitution effect of chromium on the physical properties La$_{0.65}$Eu$_{0.05}$Sr$_{0.3}$Mn$_{1-x}$Cr$_x$O$_3$ nanocrystalline powders of La$_{0.65}$Ba$_{0.3}$Mn$_{1-x}$Cr$_x$O$_3$ perovskites have been synthesized by the sol-gel method. X-ray diffraction along with the Rietveld-refinement shows the formation of pure crystalline phase with rhombohedral symmetry (space group R-3C, no. 167). Magnetic measurements indicate that the ferromagnetic double exchange interaction is weakened with increasing Cr concentration, resulting in a shift in T_c from 342K to 285K as x varied between 0 and 0.15. Furthermore, all samples undergo a paramagnetic (PM) - ferromagnetic (FM) phase transition at T_M = T_c. Based on the idea that doped manganites consist of ferromagnetic-metallic and paramagnetic-semiconducting (M-SC) regions coexisting in the same specimen, a good fit of the resistivity with the phenomenological percolation model, may be obtained by combining the contributions of the resistivity above and below T_M by a single expression in the temperature region between 20 and 400K. We found that the estimated results are in good agreement with the obtained experimental data. The maximum magnetic entropy change (ΔS_M) and the relative cooling power (RCP) for the composition $x=0.1$ are found to be, respectively, 4.20 J kg$^{-1}$ K$^{-1}$ and 238 J kg$^{-1}$ for a 5-T field change, making of this material a promising candidate for magnetic refrigeration near room temperature. Arrrott plot analyses and a universal curve method were applied to study the order of the magnetic transition in this system.

Keywords: Nanocrystalline manganites, Rietveld refinement, magnetic properties, modified sol-gel Pechini method