The synthesis and crystal structure of Cd(II)-Azoxybenzenetetracarboxylate with 1,4-bis(2-methylimidazol-1-yl)butane

Murat TAŞ¹, Müşer Arıcı², Okan Zafer Yeşıle³

1. Department of Science Education, Ondokuz Mayıs University, 55130, Samsun, Turkey
2. Department of Chemistry, Eskişehir Osmangazi University, 26480 Eskişehir, Turkey

email: murat.tas@omu.edu.tr

During the last decades, there is a continued interest in the rational design and synthesis of coordination polymers due not only their application fields such as gas storage/separation, catalysis, luminescence, sensor, but also their fascinating topological structures [1]. Despite the syntheses of a great deal of coordination polymers, it has been still difficult the controllable synthesis of coordination polymers. In the assembly of coordination polymers, several factors, such as, organic ligands, metal ions, pH, solvents, temperature are the key factors [2]. Hence, it is important to choose the organic ligands, metal ions and regulate the reaction conditions for desired structures. In this study, \([\text{Cd}_{2}u_{6}o_{bte})(u-1,4-bmbeib)(H_{2}O)_{2}\]n (H\(_{2}\)o\(_{bte}\)=3,3’,5,5’-azoxybenzenetetracarboxylic acid, 1,4-bmbeib: 1,4-bis(2-methylimidazol-1-yl)butane) was synthesized and characterized by elemental analysis, IR spectrum, single crystal X-ray diffraction. Complex 1 was prepared by the solvothermal reaction of H\(_{2}\)abtc (0.1 g, 0.279 mmol), CdCl\(_{2}\), 2.5H\(_{2}\)O (0.127 g, 0.558 mmol) and 1,4-bmbeib ligand (0.061 g, 0.279 mmol) at 100 °C in the mixture of DMF: H\(_{2}\)O (10:2, v:v) in the presence of H\(_{2}\)O\(_{2}\). The crystal structure of 1 with atom numbering scheme is shown in Fig. 1a. X-ray single-crystal diffraction analysis indicates that complex 1 crystallizes in the triclinic space group P. The asymmetric unit of 1 consists of one Cd(II) ion, one half 1,4-bmbeib, one half ao\(_{bte}\) and one aqua ligands. Ao\(_{bte}\) ligand displays new coordination mode in 1 and each ao\(_{bte}\) ligand acts a decadentate ligand in which 3,3’-carboxyl groups display bidentate chelating mode and 5,5’-carboxyl groups exhibit bidentate chelating and monodentate bridging modes, connecting to six metal centers. Each Cd(II) ions are bridging by 3,3’-and 5,5’-carboxylate oxygen atoms of ao\(_{bte}\) ligand to form 1D double chains with the 26-membered rings. Adjacent 1D double chains are linked by 5,5’-carboxyl groups of ao\(_{bte}\) with Cd-Cd distance of 3.876 Å to generate 2D planar structures. 2D structures are extended to 3D porous structure by the coordination of 1,4-bmbeib ligand (Fig. 1b).

Acknowledgements This work has been supported by The Scientific and Technological Research Council of Turkey (TUBITAK, No: 113Z313).

References

Figure 1. (a) The crystal structure of 1 with the atom labeling and (b) 3D structure of 1.

Keywords: Coordination polymers, azoxybenzenetetracarboxylate