MS38. Combining crystallographic information with other methods

Chairs: Marco Milanesio, Poul Norby

MS38-P1 Polymorph screening and crystal structure solution of 3-methylglutaric acid

Lukas Tapmeyer¹, Martin U. Schmidt¹, Michael Bolte¹

1. Goethe University, Frankfurt am Main, Germany

e-mail: lukas.tapmeyer@stud.uni-frankfurt.de

In solid-state NMR, as in almost every analytic technique, standard samples are needed to calibrate equipment in order to validate routine data collection. 3-Methylglutaric acid is a potential reference substance even though its crystal structure is unknown. [1]

As the crystal structure can influence the solid state NMR spectrum, the occurrence of polymorphs under the usual experimental conditions has to be investigated.

3-Methylglutaric acid crystallizes readily from a variety of solvents. A representative set of commonly used solvents was selected and the crystallisation performed at room temperature and at elevated temperature. To exclude phase changes at higher temperatures DTA-TG was employed. As no diverging phases were identified by X-ray powder diffraction, the structure was determined by single crystal X-ray diffraction.

To obtain data matching the experimental conditions of solid-state NMR, the diffraction measurement was carried out at -100 °C as well as at 20 °C. The determined structures were identical within the thermal expansion as expected, similar to the results of earlier executed differential thermal analysis.

3-Methylglutaric acid crystallises in the space group P 2₁/c with four molecules per unit cell (general position) and the lattice parameters

\[
\begin{align*}
 a &= 13.849, \quad b = 5.323, \quad c = 10.128 \quad \text{and} \quad \beta = 110.284 \\
(R &= 7.73) \quad \text{at} \quad -100 \, ^\circ \text{C} \\
 a &= 13.909, \quad b = 5.367, \quad c = 10.307 \quad \text{and} \quad \beta = 110.555 \\
(R &= 5.29) \quad \text{at} \quad \text{room temperature (Fig. 1).}
\end{align*}
\]